Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256167

ABSTRACT

A new mononuclear Cu(II) complex [Cu(L2)(H2O)2], where L is the Schiff base 2-[2-(3-bromopropoxy)benzylideneamino] benzoic acid, was synthesized and covalently anchored onto an amino-functionalized SBA-15 mesoporous silica in order to obtain an efficient heterogeneous catalyst. The elemental, structural, textural and morphological characterization confirmed the coordination of the central Cu(II) ion with two ligands and two H2O molecules in the synthesized complex and its successful immobilization into the inner pore surface of the NH2-functionalized support without the loss of the mesoporous structure. The catalytic activity of the free or immobilized Cu(II) complex was tested in the oxidation of cyclohexene with H2O2 under an air atmosphere and the dismutation reaction of the superoxide radical anions with very good results. In addition, catalyst reuse tests claim its suitability in alkene oxidation processes or as a biomimetic catalyst.


Subject(s)
Biomimetics , Copper , Hydrogen Peroxide , Schiff Bases , Silicon Dioxide
2.
Molecules ; 26(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065538

ABSTRACT

New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV-Vis-NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.


Subject(s)
Cobalt/chemistry , Copper/chemistry , Nickel/chemistry , Schiff Bases/chemistry , Sulfathiazoles/chemistry , Anti-Bacterial Agents/chemistry , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...