Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37630990

ABSTRACT

Small-molecule drug conjugates (SMDCs) are compounds in which a therapeutic payload is conjugated to a targeting vector, for specific delivery to the tumor site. This promising approach can be translated to the treatment of prostate cancer by selecting a targeting vector which binds to the prostate-specific membrane antigen (PSMA). Moreover, the addition of a bifunctional chelator to the molecule allows for the use of both diagnostic and therapeutic radionuclides. In this way, the distribution of the SMDC in the body can be monitored, and combination therapy regimes can be implemented. We combined a glutamate-urea-lysine vector to the cytotoxic agent DM1 and a DOTA chelator via an optimized linker to obtain the theranostic SMDC (T-SMDC) ePSMA-DM1. ePSMA-DM1 retained a high binding affinity to PSMA and demonstrated PSMA-specific uptake in cells. Glutathione stability assays showed that the half-life of the T-SMDC in a reducing environment was 2 h, and full drug release was obtained after 6 h. Moreover, 100 nM of ePSMA-DM1 reduced the cell viability of the human PSMA-positive LS174T cells by >85% after 72 h of incubation, which was comparable to a 10-fold higher dose of free DM1. [111In]In-ePSMA-DM1 and [177Lu]Lu-ePSMA-DM1 were both obtained in high radiochemical yields and purities (>95%), with >90% stability in PBS and >80% stability in mouse serum for up to 24 h post incubation at 37 °C. SPECT/CT imaging studies allowed for a faint tumor visualization of [111In]In-ePSMA-DM1 at 1 h p.i., and the ex vivo biodistribution showed tumor uptake (2.39 ± 0.29% ID/g) at 1 h p.i., with the compound retained in the tumor for up to 24 h. Therefore, ePSMA-DM1 is a promising T-SMDC candidate for prostate cancer, and the data obtained so far warrant further investigations, such as therapeutic experiments, after further optimization.

2.
Molecules ; 28(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241763

ABSTRACT

Prostate-specific membrane antigen (PSMA) targeting radiopharmaceuticals have been successfully used for diagnosis and therapy of prostate cancer. Optimization of the available agents is desirable to improve tumor uptake and reduce side effects to non-target organs. This can be achieved, for instance, via linker modifications or multimerization approaches. In this study, we evaluated a small library of PSMA-targeting derivatives with modified linker residues, and selected the best candidate based on its binding affinity to PSMA. The lead compound was coupled to a chelator for radiolabeling, and subject to dimerization. The resulting molecules, 22 and 30, were highly PSMA specific (IC50 = 1.0-1.6 nM) and stable when radiolabeled with indium-111 (>90% stable in PBS and mouse serum up to 24 h). Moreover, [111In]In-30 presented a high uptake in PSMA expressing LS174T cells, with 92.6% internalization compared to 34.1% for PSMA-617. Biodistribution studies in LS174T mice xenograft models showed that [111In]In-30 had a higher tumor and kidney uptake compared to [111In]In-PSMA-617, but increasing T/K and T/M ratios at 24 h p.i. Tumors could be clearly visualized at 1 h p.i. by SPECT/CT after administration of [111In]In-22 and [111In]In-PSMA-617, while [111In]In-30 showed a clear signal at later time-points (e.g., 24 h p.i.).


Subject(s)
Antigens, Surface , Prostatic Neoplasms , Male , Humans , Animals , Mice , Tissue Distribution , Antigens, Surface/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Single Photon Emission Computed Tomography Computed Tomography , Radiopharmaceuticals/chemistry , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...