Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 196(7): 595, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833198

ABSTRACT

Aquatic humic substances (AHS) are defined as an important components of organic matter, being composed as small molecules in a supramolecular structure and can interact with metallic ions, thereby altering the bioavailability of these species. To better understand this behavior, AHS were extracted and characterized from Negro River, located near Manaus city and Carú River, that is situated in Itacoatiara city, an area experiencing increasing anthropogenic actions; both were characterized as blackwater rivers. The AHS were characterized by 13C nuclear magnetic ressonance and thermochemolysis GC-MS to obtain structural characteristics. Interaction studies with Cu (II), Al (III), and Fe (III) were investigated using fluorescence spectroscopy applied to parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy with Fourier transform infrared spectroscopy (2D-COS FTIR). The AHS from dry season had more aromatic fractions not derived from lignin and had higher content of alkyls moities from microbial sources and vegetal tissues of autochthonous origin, while AHS isolated in the rainy season showed more metals in its molecular architecture, lignin units, and polysacharide structures. The study showed that AHS composition from rainy season were able to interact with Al (III), Fe (III), and Cu (II). Two fluorescent components were identified as responsible for interaction: C1 (blue-shifted) and C2 (red-shifted). C1 showed higher complexation capacities but with lower complexation stability constants (KML ranged from 0.3 to 7.9 × 105) than C2 (KML ranged from 3.1 to 10.0 × 105). 2D-COS FTIR showed that the COO- and C-O in phenolic were the most important functional groups for interaction with studied metallic ions.


Subject(s)
Aluminum , Copper , Environmental Monitoring , Humic Substances , Rivers , Seasons , Water Pollutants, Chemical , Humic Substances/analysis , Rivers/chemistry , Spectroscopy, Fourier Transform Infrared , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Copper/analysis , Aluminum/analysis , Aluminum/chemistry , Iron/analysis , Iron/chemistry , Brazil , Factor Analysis, Statistical
2.
Plants (Basel) ; 12(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687394

ABSTRACT

Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.

3.
Molecules ; 26(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672045

ABSTRACT

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Charcoal/chemistry , Charcoal/pharmacology , Gas Chromatography-Mass Spectrometry , Plant Development/drug effects , Quaternary Ammonium Compounds/chemistry , Water/chemistry , Biological Assay , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Seeds/drug effects , Zea mays/drug effects , Zea mays/growth & development
4.
Chemosphere ; 256: 127110, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32464361

ABSTRACT

Organic matter plays many roles in the soil ecosystem. One property of the substance concerns the metal complexation and interaction with organic contaminants. In this sense, the humic substances (HS), a heterogeneous mixture of compounds, naturally derived from degradation of biomass, have been widely studied in environmental sciences. Recent advances showed a new way to produce humic-like substances (HLS) through hydrothermal carbonization of biomass. Thus, this study aimed to evaluate the HLS of hydrochars, produced by using a mixture of sugarcane bagasse and vinasse with sulfuric acid added (1 and 4% v/v), and to assess their interactions with metal ions, (Fe(III), Al(III), Cu(II) and Co(II)) using EEM-PARAFAC and a two-dimensional FTIR correlation analysis. The results were compared to the humic substances extracted from the Amazonian Anthrosol, as a model of anthropogenic organic matter. NMR analysis showed that humic-like extracts from hydrochar are mainly hydrophobic, while the soil has a greater contribution of polar moieties. The HLS and HS showed similar complexation capacities for Fe(III), Al(III) and Cu(II) assays. For Co(II) HLS exhibited larger affinities than HS. Two-dimensional correlation analysis FTIR showed that chemical groups may undergo conformational alteration with metal additions to achieve more stable arrangements (higher stability constant). Therefore, these results contribute more knowledge about the mechanism of HS and metal ion interaction, as well as showing that HTC can be an interesting option for HLS production, to be used as humic based materials.


Subject(s)
Charcoal/chemistry , Humic Substances/analysis , Metals, Heavy/chemistry , Soil/chemistry , Binding Sites , Brazil , Ecosystem , Hydrophobic and Hydrophilic Interactions , Ions , Spectroscopy, Fourier Transform Infrared
5.
Sci Total Environ ; 506-507: 234-40, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25460956

ABSTRACT

Humic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant. Characterization using nuclear magnetic resonance (NMR) allowed us to infer that the HS from an area predominantly characterized by sugar cane cultivation (41.9%) and a typical rural area (35.0%) showed the highest aromaticity percentage. Using the off-line TMAH-thermochemolysis-GC-MS, we inferred that the HS of a typical rural area had a structure rich in plant waxes, plant biopolyester and a large amount of fatty acid methyl ester, which are related to the large amount of humic acid in the structure. The HS samples from the sugar cane cultivation area and the impoundment receiving all of the pollution load from the Turvo/Grande Hydrographic Basin (Bacia Hidrográfica do Turvo/Grande-BHTG) contained contributions from compounds rich in lipids and fatty acid methyl esters, highlighting the presence of the breakdown of petroleum-derived hydrocarbons in the area receiving the entire pollution load. We conclude that the HS extracted from the sediments of the Preto, Turvo and Grande rivers showed well-defined characteristics that varied depending on soil use and occupation, especially the HS extracted from sediments sampled in areas typically planted with sugar cane and rural areas, whose structures contained more aromatic groups.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Humic Substances/analysis , Rivers/chemistry , Water Pollutants/analysis , Brazil , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Soil/chemistry , Water Pollutants/chemistry
6.
J Agric Food Chem ; 62(47): 11412-9, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25379603

ABSTRACT

Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.


Subject(s)
Humic Substances/analysis , Soil/chemistry , Animals , Cattle , Gas Chromatography-Mass Spectrometry , Lignin/chemistry , Magnetic Resonance Spectroscopy , Manure/analysis , Oligochaeta , Plant Roots/drug effects , Plant Roots/growth & development , Seeds/chemistry , Zea mays/drug effects , Zea mays/growth & development
7.
J Agric Food Chem ; 58(6): 3681-8, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-20232906

ABSTRACT

Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.


Subject(s)
Humic Substances/analysis , Plant Roots/growth & development , Soil/analysis , Plant Development
8.
Chemosphere ; 78(4): 457-66, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19910019

ABSTRACT

Preparative high performance size-exclusion chromatography (HPSEC) was applied to humic acids (HA) extracted from vermicompost in order to separate humic matter of different molecular dimension and evaluate the relationship between chemical properties of size-fractions (SF) and their effects on plant root growth. Molecular dimensions of components in humic SF was further achieved by diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR) based on diffusion coefficients (D), while carbon distribution was evaluated by solid state (CP/MAS) (13)C NMR. Seedlings of maize and Arabidopsis were treated with different concentrations of SF to evaluate root growth. Six different SF were obtained and their carbohydrate-like content and alkyl chain length decreased with decreasing molecular size. Progressive reduction of aromatic carbon was also observed with decreasing molecular size of separated fractions. Diffusion-ordered spectroscopy (DOSY) spectra showed that SF were composed of complex mixtures of aliphatic, aromatic and carbohydrates constituents that could be separated on the basis of their diffusion. All SF promoted root growth in Arabidopsis and maize seedlings but the effects differed according to molecular size and plant species. In Arabidopsis seedlings, the bulk HA and its SF revealed a classical large auxin-like exogenous response, i.e.: shortened the principal root axis and induced lateral roots, while the effects in maize corresponded to low auxin-like levels, as suggested by enhanced principal axis length and induction of lateral roots. The reduction of humic heterogeneity obtained in HPSEC separated size-fractions suggested that their physiological influence on root growth and architecture was less an effect of their size than their content of specific bioactive molecules. However, these molecules may be dynamically released from humic superstructures and exert their bioactivity when weaker is the humic conformational stability as that obtained in the separated size-fractions.


Subject(s)
Chromatography, Gel/methods , Humic Substances/analysis , Magnetic Resonance Spectroscopy/methods , Soil/analysis , Indoleacetic Acids/pharmacology , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL