Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(8): e0272703, 2022.
Article in English | MEDLINE | ID: mdl-35943990

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.


Subject(s)
Fatigue Syndrome, Chronic , Fatigue Syndrome, Chronic/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Microscopy, Electron, Transmission , Phenotype , Pilot Projects
2.
Nature ; 583(7818): 737-743, 2020 07.
Article in English | MEDLINE | ID: mdl-32728247

ABSTRACT

Physical interactions between distal regulatory elements have a key role in regulating gene expression, but the extent to which these interactions vary between cell types and contribute to cell-type-specific gene expression remains unclear. Here, to address these questions as part of phase III of the Encyclopedia of DNA Elements (ENCODE), we mapped cohesin-mediated chromatin loops, using chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), and analysed gene expression in 24 diverse human cell types, including core ENCODE cell lines. Twenty-eight per cent of all chromatin loops vary across cell types; these variations modestly correlate with changes in gene expression and are effective at grouping cell types according to their tissue of origin. The connectivity of genes corresponds to different functional classes, with housekeeping genes having few contacts, and dosage-sensitive genes being more connected to enhancer elements. This atlas of chromatin loops complements the diverse maps of regulatory architecture that comprise the ENCODE Encyclopedia, and will help to support emerging analyses of genome structure and function.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , Genome, Human/genetics , Molecular Sequence Annotation , Alternative Splicing/genetics , Cell Differentiation/genetics , Cell Line , Cells/metabolism , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Humans , Molecular Conformation , Promoter Regions, Genetic/genetics , Cohesins
3.
Nat Methods ; 13(11): 953-958, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27723755

ABSTRACT

Paired DNA and RNA profiling is increasingly employed in genomics research to uncover molecular mechanisms of disease and to explore personal genotype and phenotype correlations. Here, we introduce Simul-seq, a technique for the production of high-quality whole-genome and transcriptome sequencing libraries from small quantities of cells or tissues. We apply the method to laser-capture-microdissected esophageal adenocarcinoma tissue, revealing a highly aneuploid tumor genome with extensive blocks of increased homozygosity and corresponding increases in allele-specific expression. Among this widespread allele-specific expression, we identify germline polymorphisms that are associated with response to cancer therapies. We further leverage this integrative data to uncover expressed mutations in several known cancer genes as well as a recurrent mutation in the motor domain of KIF3B that significantly affects kinesin-microtubule interactions. Simul-seq provides a new streamlined approach for generating comprehensive genome and transcriptome profiles from limited quantities of clinically relevant samples.


Subject(s)
DNA/genetics , Gene Expression Profiling/methods , RNA, Messenger/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Esophageal Neoplasms/genetics , Gene Library , Genome, Human/genetics , Humans , Kinesins/genetics , Male , Mutation , Transcriptome , Transposases/genetics
4.
Cell ; 162(5): 1051-65, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26300125

ABSTRACT

Deciphering the impact of genetic variants on gene regulation is fundamental to understanding human disease. Although gene regulation often involves long-range interactions, it is unknown to what extent non-coding genetic variants influence distal molecular phenotypes. Here, we integrate chromatin profiling for three histone marks in lymphoblastoid cell lines (LCLs) from 75 sequenced individuals with LCL-specific Hi-C and ChIA-PET-based chromatin contact maps to uncover one of the largest collections of local and distal histone quantitative trait loci (hQTLs). Distal QTLs are enriched within topologically associated domains and exhibit largely concordant variation of chromatin state coordinated by proximal and distal non-coding genetic variants. Histone QTLs are enriched for common variants associated with autoimmune diseases and enable identification of putative target genes of disease-associated variants from genome-wide association studies. These analyses provide insights into how genetic variation can affect human disease phenotypes by coordinated changes in chromatin at interacting regulatory elements.


Subject(s)
Chromatin/metabolism , Chromosomes, Human/metabolism , Human Genome Project , Cell Line , Chromosomes, Human/chemistry , Cohort Studies , Female , Gene Regulatory Networks , Genome-Wide Association Study , Histones/metabolism , Humans , Lymphocytes/metabolism , Male , Quantitative Trait Loci , Regulatory Elements, Transcriptional
5.
Nat Genet ; 47(7): 710-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26053494

ABSTRACT

Aberrant regulation of gene expression in cancer can promote survival and proliferation of cancer cells. Here we integrate whole-genome sequencing data from The Cancer Genome Atlas (TCGA) for 436 patients from 8 cancer subtypes with ENCODE and other regulatory annotations to identify point mutations in regulatory regions. We find evidence for positive selection of mutations in transcription factor binding sites, consistent with these sites regulating important cancer cell functions. Using a new method that adjusts for sample- and genomic locus-specific mutation rates, we identify recurrently mutated sites across individuals with cancer. Mutated regulatory sites include known sites in the TERT promoter and many new sites, including a subset in proximity to cancer-related genes. In reporter assays, two new sites display decreased enhancer activity upon mutation. These data demonstrate that many regulatory regions contain mutations under selective pressure and suggest a greater role for regulatory mutations in cancer than previously appreciated.


Subject(s)
Neoplasms/genetics , Promoter Regions, Genetic , Base Sequence , Binding Sites , Conserved Sequence , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Genome, Human , Humans , Molecular Sequence Annotation , Mutation
6.
Mol Cell ; 58(4): 586-97, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26000844

ABSTRACT

The human genome sequence has profoundly altered our understanding of biology, human diversity, and disease. The path from the first draft sequence to our nascent era of personal genomes and genomic medicine has been made possible only because of the extraordinary advancements in DNA sequencing technologies over the past 10 years. Here, we discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application.


Subject(s)
Genome, Human/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Microbiota/genetics , Transcriptome/genetics , Humans , Neoplasms/genetics , Precision Medicine/methods
7.
Science ; 342(6159): 750-2, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24136358

ABSTRACT

The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Binding Sites , CCCTC-Binding Factor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic/genetics , Genetic Variation , Histones/genetics , Histones/metabolism , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cohesins
8.
BMC Res Notes ; 6: 189, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23656696

ABSTRACT

BACKGROUND: Mice homozygous for the spontaneous wooly mutation (abbreviated wly) are recognized as early as 3-4 weeks of age by the rough or matted appearance of their coats. Previous genetic analysis has placed wly in a 5.9 Mb interval on Chromosome 11 that contains over 200 known genes. Assignment of wly to one of these genes is needed in order to provide probes that would ultimately facilitate a complete molecular analysis of that gene's role in the normal and disrupted development of the mammalian integument. RESULTS: Here, a large intraspecific backcross family was used to genetically map wly to a smaller (0.8 Mb) span on mouse Chromosome 11 that includes fewer than 20 genes. DNA sequencing of the coding regions in two of these candidates known to be expressed in skin has revealed a 955 bp, wly-specific deletion. This deletion, which lies within the coordinates of both Slc5a10 [for solute carrier family 5 (sodium/glucose cotransporter), member 10] and Fam83g (for family with sequence similarity 83, member G), alters the splicing of mutant Fam83g transcripts only, and is predicted to result in a severely truncated (probably non-functional) protein product. CONCLUSION: We suggest that this mutation in Fam83g is the likely basis of the mouse wooly phenotype.


Subject(s)
Chromosome Mapping , Mutation , Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Crosses, Genetic , DNA Primers , Meiosis/genetics , Mice , Molecular Probes , Molecular Sequence Data , Phenotype , Sequence Homology, Amino Acid
9.
BMC Genet ; 14: 40, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23659281

ABSTRACT

BACKGROUND: Mice homozygous for the juvenile alopecia mutation (jal) display patches of hair loss that appear as soon as hair develops in the neonatal period and persist throughout life. Although a report initially describing this mouse variant suggested that jal maps to mouse Chromosome 13, our preliminary mapping analysis did not support that claim. RESULTS: To map jal to a particular mouse chromosome, we produced a 103-member intraspecific backcross panel that segregated for jal, and typed it for 93 PCR-scorable, microsatellite markers that are located throughout the mouse genome. Only markers from the centromeric tip of Chromosome 2 failed to segregate independently from jal, suggesting that jal resides in that region. To more precisely define jal's location, we characterized a second, 374-member backcross panel for the inheritance of five microsatellite markers from proximal Chromosome 2. This analysis restricted jal's position between D2Mit359 and D2Mit80, an interval that includes Il2ra (for interleukin 2 receptor, alpha chain), a gene that is known to be associated with alopecia areata in humans. Complementation testing with an engineered null allele of Il2ra, however, showed that jal is a mutation in a distinct gene. To further refine the location of jal, the 374-member panel was typed for a set of four single-nucleotide markers located between D2Mit359 and D2Mit80, identifying a 0.55 Mb interval where jal must lie. This span includes ten genes-only one of which, Gata3 (for GATA binding protein 3)-is known to be expressed in skin. Complementation testing between jal and a Gata3 null allele produced doubly heterozygous, phenotypically mutant offspring. CONCLUSIONS: The results presented indicate that the jal mutation is a mutant allele of the Gata3 gene on mouse Chromosome 2. We therefore recommend that the jal designation be changed to Gata3jal, and suggest that this mouse variant may provide an animal model for at least some forms of focal alopecia that have their primary defect in the hair follicle and lack an inflammatory component.


Subject(s)
Alleles , Alopecia/genetics , Chromosome Mapping , GATA3 Transcription Factor/genetics , Mutation , Animals , Base Sequence , DNA Primers , Genetic Complementation Test , Interleukin-2 Receptor alpha Subunit/genetics , Mice , Mice, Inbred Strains , Polymerase Chain Reaction
10.
Exp Dermatol ; 19(6): 527-32, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20201958

ABSTRACT

Please cite this paper as: The mouse frizzy (fr) and rat 'hairless' (fr(CR)) mutations are natural variants of protease serine S1 family member 8 (Prss8). Experimental Dermatology 2010; 19: 527-532. Abstract: We have previously suggested (based on genetic mapping analysis) that the allelic 'fuzzy' and 'hairless' mutations in the rat are likely orthologues of the mouse frizzy mutation (fr). Here, we analysed three large intraspecific backcross panels that segregated for mouse fr to restrict this locus to a 0.6-Mb region that includes fewer than 30 genes. DNA sequencing of one of these candidates known to be expressed in skin, protease serine S1 family member 8 (Prss8), revealed a T to A transversion associated with the fr allele that would result in a valine to aspartate substitution at residue 170 in the gene product. To test whether this missense mutation might be the molecular basis of this frizzy variant, we crossed fr/fr mice with mice that carried a recessive perinatal lethal mutation in Prss8. Hybrid offspring that inherited both fr and the Prss8 null allele displayed abnormal hair and skin, showing that these two mutations are allelic, and suggesting strongly that the T to A mutation in Prss8 is responsible for the mutant frizzy phenotype. Sequence analysis of all Prss8 coding regions in the 'hairless' rat identified a 12-bp deletion in the third exon, indicating that mouse fr and the rat 'hairless' mutations are indeed orthologues. However, this analysis failed to detect any alterations to Prss8 coding sequences in the allelic 'fuzzy' rat variant.


Subject(s)
Hair Diseases/genetics , Mutation/genetics , Serine Endopeptidases/genetics , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Crossing Over, Genetic/genetics , Female , Genetic Complementation Test , Hair Diseases/pathology , Hair Follicle/pathology , Inbreeding , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , Rats , Rats, Hairless , Rats, Inbred BN , Rats, Mutant Strains , Sequence Analysis, DNA , Sequence Deletion/genetics , Skin/pathology , Vibrissae/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...