Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(27): 15696-15706, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32618972

ABSTRACT

A mechanistic study on interaction of a chiral modifier - (R)-(+)-1-(1-naphthylethylamine) (R-NEA) - with a single crystalline Pt(111) surface is reported. The details of the adsorption geometry of individual R-NEA molecules and their intermolecular interactions are addressed by combination of infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). The spectroscopic observations suggest that the molecules are tilted with respect to the underlying metal substrate with the long axis of the naphthyl ring being parallel and the short axis tilted with respect to the surface. In the medium coverage range, formation of directed 3-5 membered chains was observed by STM for the first time, which points to intermolecular bonding between individual molecules and might account for an unusual tilted adsorption geometry deduced from the IR spectra. Based on the STM images revealing the atomic structure of the Pt grid close to the R-NEA chains, we propose the adsorption configuration of NEA fitting both the IRAS and STM data. The obtained results suggest that this strong intermolecular interaction energetically stabilizes the tilted adsorption geometry of the naphthyl ring, which otherwise would be expected to lie flat on the metal to maximize the dispersive interactions. At the coverage close to saturation, R-NEA builds a self-assembled overlayer with hexagonal symmetry, exhibiting intermolecular distances larger than in the directed chains.

2.
Rev Sci Instrum ; 90(5): 053903, 2019 May.
Article in English | MEDLINE | ID: mdl-31153295

ABSTRACT

A new custom-designed ultrahigh vacuum (UHV) apparatus combining molecular beam techniques and in situ surface spectroscopy for reactivity measurements on complex nanostructured model surfaces is described. It has been specifically designed to study the mechanisms, kinetics, and dynamics of heterogeneously catalyzed reactions over well-defined model catalysts consisting of metal nanoparticles supported on thin oxide films epitaxially grown on metal single crystals. The reactivity studies can be performed in a broad pressure range starting from UHV up to the ambient pressure conditions. The UHV system includes (i) a preparation chamber providing the experimental techniques required for the preparation and structural characterization of single-crystal based model catalysts such as oxide supported metal particles or ordered oxide surfaces and (ii) the reaction chamber containing three molecular beams-two effusive and one supersonic, which are crossed at the same point on the sample surface, infrared reflection-absorption spectroscopy for the detection of surface-adsorbed species, and quadrupole mass spectrometry for gas phase analysis. The supersonic beam is generated in a pulsed supersonic expansion and can be modulated via a variable duty-cycle chopper. The effusive beams are produced by newly developed compact differentially pumped sources based on multichannel glass capillary arrays. Both effusive sources can be modulated by a vacuum-motor driven chopper and are capable of providing high flux and high purity beams. The apparatus contains an ambient pressure cell, which is connected to the preparation chamber via an in situ sample transfer system and provides an experimental possibility to study the reactivity of well-defined nanostructured model catalysts in a broad range of pressure conditions-up to ambient pressure-with the gas phase analysis based on gas chromatography. Additionally, a dedicated deposition chamber is connected to the preparation chamber, which is employed for the in situ functionalization of model surfaces with large organic molecules serving as promoters or modifiers of chemical reactions. We present a general overview of the apparatus as well as a description of the individual components and their interplay. The results of the test measurements involving the most important components are presented and discussed.

3.
Small ; 11(30): 3686-93, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-25940994

ABSTRACT

A single atomic manipulation on the delta-doped B:Si(111)-(√3x√3)R30° surface using a low temperature dynamic atomic force microscopy based on the Kolibri sensor is investigated. Through a controlled vertical displacement of the probe, a single Si adatom in order to open a vacancy is removed. It is shown that this process is completely reversible, by accurately placing a Si atom back into the vacancy site. In addition, density functional theory simulations are carried out to understand the underlying mechanism of the atomic manipulation in detail. This process also rearranges the atoms at the tip apex, which can be effectively sharpened in this way. Such sharper tips allow for a deeper look into the Si adatom vacancy site. Namely, high-resolution images of the vacancy showing subsurface Si dangling bond triplets, which surround the substitutional B dopant atom in the first bilayer, are achieved.

4.
Chem Commun (Camb) ; 47(33): 9333-5, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21766106

ABSTRACT

The transfer of the cooperative self-assembled fibrils to a gold substrate has been studied by means of scanning probe microscopy techniques revealing the crucial role of the early formation of a monolayer.

5.
Nano Lett ; 10(9): 3337-42, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20677769

ABSTRACT

In this work, we spatially resolve by Kelvin probe force microscopy (KPFM) under ultrahigh vacuum (UHV) the surface photovoltage in high-efficiency nanoscale phase segregated photovoltaic blends of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The spatial resolution achieved represents a 10-fold improvement over previous KPFM reports on organic solar cells. By combining the damping contrast to the topographic data in noncontact atomic force microscopy under UHV, surface morphologies of the interpenetrated networks are clearly revealed. We show how the lateral resolution in KPFM can be significantly enhanced by optimizing the damping signal, allowing a direct visualization of the carrier generation at the donor-acceptor interfaces and their transport through the percolation pathways in the nanometer range. Henceforth, high-resolution KPFM has the potential to become a routine characterization tool for organic and hybrid photovoltaics.

SELECTION OF CITATIONS
SEARCH DETAIL
...