Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2731, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553480

ABSTRACT

Cement hydration is crucial for the strength development of cement-based materials; however, the mechanism that underlies this complex reaction remains poorly understood at the molecular level. An in-depth understanding of cement hydration is required for the development of environmentally friendly cement and consequently the reduction of carbon emissions in the cement industry. Here, we use molecular dynamics simulations with a reactive force field to investigate the initial hydration processes of tricalcium silicate (C3S) and dicalcium silicate (C2S) up to 40 ns. Our simulations provide theoretical support for the rapid initial hydration of C3S compared to C2S at the molecular level. The dissolution pathways of calcium ions in C3S and C2S are revealed, showing that, two dissolution processes are required for the complete dissolution of calcium ions in C3S. Our findings promote the understanding of the calcium dissolution stage and serve as a valuable reference for the investigation of the initial cement hydration.

2.
J Chem Phys ; 160(12)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545947

ABSTRACT

Noncovalent bonding between atmospheric molecules is central to the formation of aerosol particles and cloud condensation nuclei and, consequently, radiative forcing. While our understanding of O-H⋯B interactions is well developed, S-H⋯B hydrogen bonding has received far less attention. Sulfur- and nitrogen-containing molecules, particularly amines, play a significant role in atmospheric chemistry, yet S-H⋯N interactions are not well understood at a fundamental level. To help characterize these systems, H2S and methyl-, ethyl-, n-propyl-, dimethyl-, and trimethylamine (MA, EA, n-PA, DMA, and TMA) have been investigated using matrix isolation Fourier transform infrared spectroscopy and high-level theoretical methods. Experiments showed that H2S forms hydrogen bonded complexes with each of the amines, with bond strengths following the trend MA ≈ EA ≈ n-PA < TMA ≤ DMA, in line with past experimental work on H2SO4·amine complexes. However, the calculated results indicated that the trend should be MA < DMA < TMA, in line with past theoretical work on H2SO4·amine complexes. Evidence of strong Fermi resonances indicated that anharmonicity may play a critical role in the stabilization of each complex. The theoretical results were able to replicate experiment only after binding energies were recalculated to include the anharmonic effects. In the case of H2SO4·amine complexes, our results suggest that the discrepancy between theory and experiment could be reconciled, given an appropriate treatment of anharmonicity.

3.
Phys Chem Chem Phys ; 22(37): 21005-21014, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32766637

ABSTRACT

The relatively weak London dispersion forces are the only interactions that could cause aggregation between simple aromatic molecules. The use of molecular dynamics and high-level ab initio computer simulations has been used to describe the aggregation and interactions between molecular systems containing benzene, naphthalene and anthracene. Mixtures containing one type of molecule (homogenous) and more than one type of molecule (heterogenous) were considered. Our results indicate that as molecular weight increases so does the temperature at which aggregation will occur. In all simulations, the mechanism of aggregation is through small clusters coalescing into larger clusters. The structural analysis of the molecules within the clusters reveals that benzene will orient itself in T-shaped and parallel displaced configurations. Molecules of anthracene prefer to orient themselves in a similar manner to a bulk crystal with no T-shaped configuration observed. The aggregation of these aromatic molecules is discussed in the context of astrochemistry with particular reference to the dust formation region around stars.

4.
Chemistry ; 24(29): 7445-7455, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29520863

ABSTRACT

Density functional theory calculations are used to study the molecular and dissociative adsorption of water on the (-201) ß-Ga2 O3 surface. The effect of adsorption of different water-like species on the geometry, binding energies, vibrational spectra and the electronic structure of the surface are discussed. The study shows that although the hydrogen evolution reaction requires a small amount of energy to become energetically favourable, the over potential for activating the oxygen evolution reaction is quite high. The results of our calculations provide insight as to why a high voltage is required in experiments to activate the water-splitting reaction, whereas previous studies of gallium oxide predicted very low activation energies for other energetically more favourable facets. Application of this work to studies of GaN-based chemical sensors with gallium oxide surfaces shows that it is possible to select the gate bias so that the sensors are not influenced by water-splitting reactions. It was also found that in the region where water splitting does not occur, the surface can exist in two states, that is, water or hydroxyl terminated.

5.
Sci Rep ; 4: 3616, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24448077

ABSTRACT

Controlling the growth of the polymorphs of calcium carbonate is important in understanding the changing environmental conditions in the oceans. Aragonite is the main polymorph in the inner shells of marine organisms, and can be readily converted to calcite, which is the most stable polymorph of calcium carbonate. Both of these polymorphs are significantly more stable than vaterite, which is the other naturally occurring polymorph of calcium carbonate, and this is reflected in its limited distribution in nature. We have investigated the effect of high shear forces on the phase behaviour of calcium carbonate using a vortex fluidic device (VFD), with experimental parameters varied to explore calcium carbonate mineralisation. Variation of tilt angle, rotation speed and temperature allow for control over the size, shape and phase of the resulting calcium carbonate.

6.
Nanoscale ; 4(4): 1051-67, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22139365

ABSTRACT

Computational techniques are widely used to explore the structure and properties of nanomaterials. This review surveys the application of both quantum mechanical and force field based atomistic simulation methods to nanoparticles, with a particular focus on the methodologies available and the ways in which they can be utilised to study structure, phase stability and morphology. The main focus of this article is on partially ionic materials, from binary semiconductors through to mineral nanoparticles, with more detailed considered of three examples, namely titania, zinc sulphide and calcium carbonate.

7.
Langmuir ; 27(5): 1821-9, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21226497

ABSTRACT

An understanding of the structure of water on metal oxide nanoparticles is important due to its involvement in a number of surface processes, such as in the modification of transport near surfaces and the resulting impact on crystal growth and dissolution. However, as direct experimental measurements probing the metal oxide-water interface of nanoparticles are not easily performed, we use atomistic simulations using experimentally derived potential parameters to determine the structure and dynamics of the interface between magnesium oxide nanoparticles and water. We use a simple strategy to generate mineral nanoparticles, which can be applied to any shape, size, or composition. Molecular dynamics simulations were then used to examine the structure of water around the nanoparticles, and highly ordered layers of water were found at the interface. The structure of water is strongly influenced by the crystal structure and morphology of the mineral and the extent of hydroxylation of the surface. Comparison of the structure and dynamics of water around the nanoparticles with their two-dimensional flat surface counterparts revealed that the size, shape, and surface composition also affects properties such as water residence times and coordination number.

8.
J Colloid Interface Sci ; 346(1): 226-31, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20304410

ABSTRACT

Molecular dynamics simulations were used to investigate possible explanations for experimentally observed differences in the growth modification of calcite particles by two organic additives, polyacrylic acid (PAA) and polyaspartic acid (p-ASP). The more rigid backbone of p-ASP was found to inhibit the formation of stable complexes with counter-ions in solution, resulting in a higher availability of p-ASP compared to PAA for surface adsorption. Furthermore the presence of nitrogen on the p-ASP backbone yields favorable electrostatic interactions with the surface, resulting in negative adsorption energies, in an upright (brush conformation). This leads to a more rapid binding and longer residence times at calcite surfaces compared to PAA, which adsorbed in a flat (pancake) configuration with positive adsorption energies. The PAA adsorption occurring despite this positive energy difference can be attributed to the disruption of the ordered water layer seen in the simulations and hence a significant entropic contribution to the adsorption free energy. These findings help explain the stronger inhibiting effect on calcite growth observed by p-ASP compared to PAA and can be used as guidelines in the design of additives leading to even more marked growth modifying effects.


Subject(s)
Acrylic Resins/chemistry , Calcium Carbonate/chemical synthesis , Molecular Dynamics Simulation , Peptides/chemistry , Adsorption , Calcium Carbonate/chemistry , Models, Molecular , Particle Size , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...