Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 144: 115802, 2021 03.
Article in English | MEDLINE | ID: mdl-33309990

ABSTRACT

The potential of whole body vibration (WBV) to maintain or enhance musculoskeletal strength during ageing is of increasing interest, with both low and high magnitude WBV having been shown to maintain or increase bone mineral density (BMD) at the lumbar spine and femoral neck. The aim of this study was to determine how a range of side alternating and vertical WBV platforms deliver vibration stimuli up through the human body. Motion capture data were collected for 6 healthy adult participants whilst standing on the Galileo 900, Powerplate Pro 5 and Juvent 100 WBV platforms. The side alternating Galileo 900 WBV platform delivered WBV at 5-30 Hz and amplitudes of 0-5 mm. The Powerplate Pro 5 vertical WBV platform delivered WBV at 25 and 30 Hz and amplitude settings of 'Low' and 'High'. The Juvent 1000 vertical WBV platform delivered a stimulus at a frequency between 32 and 37 Hz and amplitude 10 fold lower than either the Galileo or Powerplate, resulting in accelerations of 0.3 g. Motion capture data were recorded using an 8 camera Vicon Nexus system with 21 reflective markers placed at anatomical landmarks between the toe and the forehead. Vibration was expressed as vertical RMS accelerations along the z-axis which were calculated as the square root of the mean of the squared acceleration values in g. The Juvent 1000 did not deliver detectable vertical RMS accelerations above the knees. In contrast, the Powerplate Pro 5 and Galileo 900 delivered vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine. The maximum vertical RMS accelerations at the anterior superior iliac spine (ASIS) were 1.00 g ±0.30 and 0.85 g ±0.49 for the Powerplate and Galileo respectively. For similar accelerations at the ASIS, the Galileo achieved greater accelerations within the lower limbs, whilst the Powerplate recorded higher accelerations in the thoracic spine at T10. The Powerplate Pro 5 and Galileo 900 deliver vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine, whereas the Juvent 1000 did not deliver detectable vertical RMS accelerations above the knee. The side alternating Galileo 900 showed greater attenuation of the input accelerations than the vertical vibrations of the Powerplate Pro 5. The platforms differ markedly in the transmission of vibration with strong influences of frequency and amplitude. Researchers need to take account of the differences in transmission between platforms when designing and comparing trials of whole body vibration.


Subject(s)
Bone Density , Vibration , Acceleration , Adult , Femur Neck , Healthy Volunteers , Humans
2.
PLoS One ; 14(10): e0223711, 2019.
Article in English | MEDLINE | ID: mdl-31618217

ABSTRACT

Our objective was to determine the efficacy and feasibility of a new approach for identifying candidate biomarkers for knee osteoarthritis (OA), based on selecting promising candidates from a range of high-frequency acoustic emission (AE) measurements generated during weight-bearing knee movement. Candidate AE biomarkers identified by this approach could then be validated in larger studies for use in future clinical trials and stratified medicine applications for this common health condition. A population cohort of participants with knee pain and a Kellgren-Lawrence (KL) score between 1-4 were recruited from local NHS primary and secondary care sites. Focusing on participants' self-identified worse knee, and using our established movement protocol, sources of variation in AE measurement and associations of AE markers with other markers were explored. Using this approach we identified 4 initial candidate AE biomarkers, of which "number of hits" showed the best reproducibility, in terms of within-session, day to day, week to week, between-practitioner, and between-machine variation, at 2 different machine upper frequency settings. "Number of hits" was higher in knees with KL scores of 2 than in KL1, and also showed significant associations with pain in the contralateral knee, and with body weight. "Hits" occurred predominantly in 2 of 4 defined movement quadrants. The protocol was feasible and acceptable to all participants and professionals involved. This study demonstrates how AE measurement during simple sit-stand-sit movements can be used to generate novel candidate knee OA biomarkers. AE measurements probably reflect a composite of structural changes and joint loading factors. Refinement of the method and increasing understanding of factors contributing to AE will enable this approach to be used to generate further candidate biomarkers for validation and potential use in clinical trials.


Subject(s)
Acoustics , Biomarkers , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/metabolism , Sound , Body Mass Index , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Multimodal Imaging/methods , Osteoarthritis, Knee/etiology , Radiography/methods , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...