Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Genomics ; 115(6): 110723, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804957

ABSTRACT

Allopolyploids often experience subgenome dominance, with one subgenome showing higher levels of gene expression and greater gene retention. Here, we address the functionality of both subgenomes of allotetraploid common carp (Cyprinus carpio) by analysing a functional network of interferon-stimulated genes (ISGs) crucial in anti-viral immune defence. As an indicator of subgenome dominance we investigated retainment of a core set of ohnologous ISGs. To facilitate our functional genomic analysis a high quality genome was assembled (WagV4.0). Transcriptome data from an in vitro experiment mimicking a viral infection was used to infer ISG expression. Transcriptome analysis confirmed induction of 88 ISG ohnologs on both subgenomes. In both control and infected states, average expression of ISG ohnologs was comparable between the two subgenomes. Also, the highest expressing and most inducible gene copies of an ohnolog pair could be derived from either subgenome. We found no strong evidence of subgenome dominance for common carp.


Subject(s)
Carps , Genome, Plant , Animals , Humans , Tetraploidy , Carps/genetics , Gene Duplication , Gene Expression Profiling
2.
BMC Genomics ; 17: 701, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27590662

ABSTRACT

BACKGROUND: The common carp (Cyprinus carpio) is the oldest, most domesticated and one of the most cultured fish species for food consumption. Besides its economic importance, the common carp is also highly suitable for comparative physiological and disease studies in combination with the animal model zebrafish (Danio rerio). They are genetically closely related but offer complementary benefits for fundamental research, with the large body mass of common carp presenting possibilities for obtaining sufficient cell material for advanced transcriptome and proteome studies. RESULTS: Here we have used 19 different tissues from an F1 hybrid strain of the common carp to perform transcriptome analyses using RNA-Seq. For a subset of the tissues we also have performed deep proteomic studies. As a reference, we updated the European common carp genome assembly using low coverage Pacific Biosciences sequencing to permit high-quality gene annotation. These annotated gene lists were linked to zebrafish homologs, enabling direct comparisons with published datasets. Using clustering, we have identified sets of genes that are potential selective markers for various types of tissues. In addition, we provide a script for a schematic anatomical viewer for visualizing organ-specific expression data. CONCLUSIONS: The identified transcriptome and proteome data for carp tissues represent a useful resource for further translational studies of tissue-specific markers for this economically important fish species that can lead to new markers for organ development. The similarity to zebrafish expression patterns confirms the value of common carp as a resource for studying tissue-specific expression in cyprinid fish. The availability of the annotated gene set of common carp will enable further research with both applied and fundamental purposes.


Subject(s)
Carps/genetics , Carps/metabolism , Proteome , Transcriptome , Animals , Computational Biology/methods , Europe , Gene Expression Profiling , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Organ Specificity , Proteomics
3.
Adv Genet ; 95: 217-51, 2016.
Article in English | MEDLINE | ID: mdl-27503359

ABSTRACT

Mycobacterium marinum infection in zebrafish has become a well-established model of tuberculosis. Both embryonic and adult zebrafish infection studies have contributed to our knowledge of the development and function of tuberculous granulomas, which are typical of mycobacterial pathogenesis. In this review we discuss how transcriptome profiling studies have helped to characterize this infection process. We illustrate this using new RNA sequencing (RNA-Seq) data that reveals three main phases in the host response to M. marinum during the early stages of granuloma development in zebrafish embryos and larvae. The early phase shows induction of complement and transcription factors, followed by a relatively minor induction of pro-inflammatory cytokines within hours following phagocytosis of M. marinum. A minimal response is observed in the mid-phase, between 6 hours and 1day post infection, when the tissue dissemination of M. marinum begins. During subsequent larval development the granulomas expand and a late-phase response is apparent, which is characterized by progressively increasing induction of complement, transcription factors, pro-inflammatory cytokines, matrix metalloproteinases, and other defense and inflammation-related gene groups. This late-phase response shares common components with the strong and acute host transcriptome response that has previously been reported for Salmonella typhimurium infection in zebrafish embryos. In contrast, the early/mid-phase response to M. marinum infection, characterized by suppressed pro-inflammatory signaling, is strikingly different from the acute response to S. typhimurium infection. Furthermore, M. marinum infection shows a collective and strongly fluctuating regulation of lipoproteins, while S. typhimurium infection has pronounced effects on amino acid metabolism and glycolysis.


Subject(s)
Immunity, Innate/immunology , Transcriptome/genetics , Transcriptome/immunology , Tuberculosis/genetics , Tuberculosis/immunology , Zebrafish/genetics , Zebrafish/immunology , Animals , Disease Models, Animal , Granuloma/genetics , Granuloma/immunology , Granuloma/microbiology , Humans , Immunity, Innate/genetics , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Tuberculosis/microbiology , Zebrafish/microbiology
4.
Adv Exp Med Biol ; 916: 239-63, 2016.
Article in English | MEDLINE | ID: mdl-27165357

ABSTRACT

Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients.


Subject(s)
Disease Models, Animal , Neoplasms/blood supply , Neovascularization, Pathologic , Zebrafish/embryology , Animals , Fluorescent Dyes , Heterografts , Neoplasm Metastasis , Neoplasms/pathology
5.
Gene Expr Patterns ; 13(7): 212-24, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23567754

ABSTRACT

The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas.


Subject(s)
Salmonella typhimurium/pathogenicity , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Brain/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization, Fluorescence , Mitochondrial Proteins , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium Infections, Nontuberculous/physiopathology , Phylogeny , Protein Interaction Domains and Motifs/genetics , Proteins/genetics , Proteins/physiology , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/physiopathology , Sequence Alignment , Spatio-Temporal Analysis , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
6.
Gen Comp Endocrinol ; 178(1): 145-52, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22580328

ABSTRACT

Significant declines in eel stocks have been noted in many parts of the world. Because eel aquaculture is dependent on wild-caught juveniles, there is a need to achieve artificial reproduction. Adult eel maturation is currently induced by repeated injections of purified gonadotropin (human chorionic gonadotropin [hCG]) or pituitary extract. Thus the determination of the biological efficacy and quantification of internal levels of gonadotropic hormones is important for optimizing artificial reproduction protocols. To quantify the plasma levels of biologically functional gonadotropic hormones, we developed a bioassay for luteinizing hormone (LH) and follicle-stimulating hormone (FSH) based on the stable expression of receptors in HEK293 cells of the Japanese eel Anguilla japonica LH (ajLHR) and the European eel Anguilla anguilla FSH (aaFSHR), respectively. Such cells also contain a firefly luciferase reporter gene driven by a cAMP-responsive element (CRE-Luc). We found that the obtained stable cells, with ajLHR, responded linearly to a more than 100,000-fold concentration range of hCG diluted in saline. The cells with aaFSHR showed a linear response to a 1000-fold concentration range of salmon pituitary extract mixed with saline. The biological functionality of the LH and FSH bioassays was validated using hCG, human FSH, and pituitary extracts from salmon, carp and eel. Since the toxins in eel plasma damaged the HEK293 cells, the protocol was adapted to selectively inactivate the toxins by heating at 37°C for 24h. This process successfully enabled the monitoring of hormone levels in blood plasma sampled from hCG-injected eels. In this paper, we describe the development of gonadotropin bioassays that will be useful for improving reproduction protocols in eel aquaculture.


Subject(s)
Biological Assay/methods , Eels/metabolism , Gonadotropins/metabolism , Animals , Cell Line , Chorionic Gonadotropin/metabolism , Follicle Stimulating Hormone/metabolism , Humans , Luteinizing Hormone/metabolism
7.
Article in English | MEDLINE | ID: mdl-19168143

ABSTRACT

Glucocorticoids regulate a plethora of physiological processes, and are widely used clinically as anti-inflammatory drugs. Their effects are mediated by the glucocorticoid receptor (GR), a ligand-activated transcription factor. Currently, zebrafish embryos are being developed into a model system for GR research, since they are easy to manipulate genetically and their phenotype can easily be visualized because of their transparent bodies. In addition, the zebrafish GR gene shows a relatively high level of similarity with its human equivalent. First, both the zebrafish and the human genome contain only a single gene encoding the GR. In all other fish species studied thus far, two GR genes have been found. Second, the zebrafish contains a C-terminal GR splice variant with high similarity to the human GRbeta, which has been shown to be a dominant-negative inhibitor of the canonical GRalpha and may be involved in glucocorticoid resistance. Thus, zebrafish embryos are potentially a useful model system for glucocorticoid receptor research, but currently only a limited number of tools is available. In this review, we discuss which tools are available and which need to be developed, in order to exploit the full potential of the zebrafish as a model system for GR research.


Subject(s)
Models, Animal , Receptors, Glucocorticoid/metabolism , Research , Zebrafish/metabolism , Animals
8.
Gene Expr Patterns ; 7(4): 511-20, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17127101

ABSTRACT

14-3-3 proteins comprise a family of dimeric multi-functional proteins present in all eukaryotes, that are important in a whelm of ubiquitous biological processes. We have analyzed the genomic structure of all 14-3-3s from zebrafish comprising 11 genes and have analyzed their phylogeny. The gene family was cloned and its expression pattern in zebrafish embryogenesis was analyzed by whole mount in situ hybridization and microarray analysis with gene specific probes. We demonstrate that maternal mRNA of 14-3-3s is expressed evenly at the first cell division. At later stage all genes are expressed in a patterned way with, in most cases, intricate patterns in the developing brain. Our result shows distinct expression patterns of various genes. Microarray results show that differences in expression levels of highly similar 14-3-3 genes also occur in the adult stage.


Subject(s)
14-3-3 Proteins/genetics , Gene Expression , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Embryo, Nonmammalian/metabolism , Embryonic Development , Humans , Oligonucleotide Array Sequence Analysis , Phylogeny , Zebrafish/genetics
9.
Evol Dev ; 7(5): 362-75, 2005.
Article in English | MEDLINE | ID: mdl-16174031

ABSTRACT

The zebrafish (Danio rerio) is an important model in evolutionary developmental biology, and its study is being revolutionized by the zebrafish genome project. Sequencing is at an advanced stage, but annotation is largely the result of in silico analyses. We have performed genomic annotation, comparative genomics, and transcriptional analysis using microarrays of the hox homeobox-containing transcription factors. These genes have important roles in specifying the body plan. Candidate sequences were located in version Z v 4 of the Ensembl genome database by TBLASTN searching with Danio and other vertebrate published Hox protein sequences. Homologies were confirmed by alignment with reference sequences, and by the relative position of genes along each cluster. RT-PCR using adult Tübingen cDNA was used to confirm annotations, to check the genomic sequence and to confirm expression in vivo. Our RT-PCR and microarray data show that all 49 hox genes are expressed in adult zebrafish. Significant expression for all known hox genes could be detected in our microarray analysis. We also find significant expression of hox 8 paralogs and hox b 7 a in the anti-sense direction. A novel gene, D. rerio hox b 13 a, was identified, and a preliminary characterization by in situ hybridization showed expression at 24 hpf at the tip of the developing tail. We are currently characterizing this gene at the functional level. We argue that the oligo design for microarrays can be greatly enhanced by the availability of genomic sequences.


Subject(s)
Genome , Homeodomain Proteins/biosynthesis , Zebrafish Proteins/biosynthesis , Zebrafish/embryology , Animals , Databases, Nucleic Acid , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA/methods , Sequence Homology, Nucleic Acid , Zebrafish/genetics , Zebrafish Proteins/genetics
10.
J Exp Bot ; 56(417): 1711-26, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15928015

ABSTRACT

Embryogenesis in plants is a unique process in the sense that it can be initiated from a wide range of cells other than the zygote. Upon stress, microspores or young pollen grains can be switched from their normal pollen development towards an embryogenic pathway, a process called androgenesis. Androgenesis represents an important tool for research in plant genetics and breeding, since androgenic embryos can germinate into completely homozygous, double haploid plants. From a developmental point of view, androgenesis is a rewarding system for understanding the process of embryo formation from single, haploid microspores. Androgenic development can be divided into three main characteristic phases: acquisition of embryogenic potential, initiation of cell divisions, and pattern formation. The aim of this review is to provide an overview of the main cellular and molecular events that characterize these three commitment phases. Molecular approaches such as differential screening and cDNA array have been successfully employed in the characterization of the spatiotemporal changes in gene expression during androgenesis. These results suggest that the activation of key regulators of embryogenesis, such as the BABY BOOM transcription factor, is preceded by the stress-induced reprogramming of cellular metabolism. Reprogramming of cellular metabolism includes the repression of gene expression related to starch biosynthesis and the induction of proteolytic genes (e.g. components of the 26S proteasome, metalloprotease, cysteine, and aspartic proteases) and stress-related proteins (e.g. GST, HSP, BI-1, ADH). The combination of cell tracking systems with biochemical markers has allowed the key switches in the developmental pathway of microspores to be determined, as well as programmed cell death to be identified as a feature of successful androgenic embryo development. The mechanisms of androgenesis induction and embryo formation are discussed, in relation to other biological systems, in special zygotic and somatic embryogenesis.


Subject(s)
Plants/embryology , Apoptosis , Breeding , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Haplotypes , Plant Growth Regulators/metabolism , Pollen/physiology , Reproduction , Signal Transduction
11.
Biochim Biophys Acta ; 1664(2): 119-31, 2004 Aug 30.
Article in English | MEDLINE | ID: mdl-15328044

ABSTRACT

In the last two decades, various biophysical techniques have been used to investigate the organization of the plasma membrane in live cells. This review describes some of the most important experimental findings and summarizes the characteristics and limitations of a few frequently used biophysical techniques. In addition, the current knowledge about three membrane organizational elements: the membrane-associated cytoskeleton, caveolae and lipid microdomains, is described in detail. Unresolved issues, experimental contradictions and future directions to integrate the variety of experimental data into a revised model of the plasma membrane of eukaryotic cells are discussed in the last section.


Subject(s)
Cell Membrane/chemistry , Actins/chemistry , Animals , Biophysical Phenomena , Biophysics , Caveolae/chemistry , Humans , Membrane Microdomains/chemistry
12.
Syst Appl Microbiol ; 26(3): 453-65, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14529189

ABSTRACT

We have analysed 198 fast-growing soybean-nodulating rhizobial strains from four different regions of China for the following characteristics: generation time; number of plasmids; lipopolysaccharide (LPS), nodulation factors (LCOs) and PCR profiles; acidification of growth medium; capacity to grow at acid, neutral, and alkaline pH; growth on LC medium; growth at 28 and 37 degrees C; melanin production capacity; Congo red absorption and symbiotic characteristics. These unbiased analyses of a total subset of strains isolated from specific soybean-cropping areas (an approach which could be called "strainomics") can be used to answer various biological questions. We illustrate this by a comparison of the molecular characteristics of five strains with interesting symbiotic properties. From this comparison we conclude, for instance, that differences in the efficiency of nitrogen fixation or competitiveness for nodulation of these strains are not apparently related to differences in Nod factor structure.


Subject(s)
Glycine max/microbiology , Rhizobium/physiology , Symbiosis , Bacterial Proteins/analysis , China , Congo Red/metabolism , DNA Fingerprinting , DNA, Bacterial/isolation & purification , DNA, Ribosomal/analysis , DNA, Ribosomal Spacer/analysis , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel , Lipopolysaccharides/analysis , Melanins/biosynthesis , Plasmids , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Rhizobium/chemistry , Rhizobium/genetics , Rhizobium/isolation & purification
13.
Mol Plant Microbe Interact ; 16(1): 53-64, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12580282

ABSTRACT

Rhizobium leguminosarum strain RBL5523 is able to form nodules on pea, but these nodules are ineffective for nitrogen fixation. The impairment in nitrogen fixation appears to be caused by a defective infection of the host plant and is host specific for pea. A Tn5 mutant of this strain, RBL5787, is able to form effective nodules on pea. We have sequenced a 33-kb region around the phage-transductable Tn5 insertion. The Tn5 insertion was localized to the 10th gene of a putative operon of 14 genes that was called the imp (impaired in nitrogen fixation) locus. Several highly similar gene clusters of unknown function are present in Pseudomonas aeruginosa, Vibrio cholerae, Edwardsiella ictaluri, and several other animal pathogens. Homology studies indicate that several genes of the imp locus are involved in protein phosphorylation, either as a kinase or dephosphorylase, or contain a phosphoprotein-binding module called a forkhead-associated domain. Other proteins show similarity to proteins involved in type III protein secretion. Two dimensional gel electrophoretic analysis of the secreted proteins in the supernatant fluid of cultures of RBL5523 and RBL5787 showed the absence in the mutant strain of at least four proteins with molecular masses of approximately 27 kDa and pIs between 5.5 and 6.5. The production of these proteins in the wild-type strain is temperature dependent. Sequencing of two of these proteins revealed that their first 20 amino acids are identical. This sequence showed homology to that of secreted ribose binding proteins (RbsB) from Bacilus subtilis and V. cholerae. Based on this protein sequence, the corresponding gene encoding a close homologue of RbsB was cloned that contains a N-terminal signal sequence that is recognized by type I secretion systems. Inoculation of RBL5787 on pea plants in the presence of supernatant of RBL5523 caused a reduced ability of RBL5787 to nodulate pea and fix nitrogen. Boiling of this supernatant before inoculation restored the formation of effective nodules to the original values, indicating that secreted proteins are indeed responsible for the impaired phenotype. These data suggest that the imp locus is involved in the secretion to the environment of proteins, including periplasmic RbsB protein, that cause blocking of infection specifically in pea plants.


Subject(s)
Bacterial Proteins/metabolism , Rhizobium leguminosarum/genetics , Symbiosis/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Cloning, Molecular , Electrophoresis, Gel, Two-Dimensional , Molecular Sequence Data , Multigene Family/genetics , Mutation , Nitrogen Fixation/genetics , Pisum sativum/genetics , Pisum sativum/microbiology , Plant Roots/microbiology , Rhizobium leguminosarum/growth & development , Sequence Analysis , Temperature
14.
Biophys J ; 81(5): 2639-46, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11606277

ABSTRACT

L-type Ca(2+) channels are an important means by which a cell regulates the Ca(2+) influx into the cytosol on electrical stimulation. Their structure and dynamics in the plasma membrane, including their molecular mobility and aggregation, is of key interest for the in-depth understanding of their function. Construction of a fluorescent variant by fusion of the yellow-fluorescent protein to the ion channel and expression in a human cell line allowed us to address its dynamic embedding in the membrane at the level of individual channels in vivo. We report on the observation of individual fluorescence-labeled human cardiac L-type Ca(2+) channels using wide-field fluorescence microscopy in living cells. Our fluorescence and electrophysiological data indicate that L-type Ca(2+) channels tend to form larger aggregates which are mobile in the plasma membrane.


Subject(s)
Bacterial Proteins/chemistry , Calcium Channels, L-Type/analysis , Diagnostic Imaging/methods , Luminescent Proteins/chemistry , Recombinant Fusion Proteins/analysis , Bacterial Proteins/genetics , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cell Line/cytology , Cell Membrane/metabolism , Electrophysiology/methods , Humans , Kidney/cytology , Luminescent Proteins/genetics , Microscopy, Fluorescence/methods , Movement/physiology , Myocardium/cytology , Protein Binding/physiology
15.
J Biotechnol ; 91(2-3): 243-55, 2001 Oct 04.
Article in English | MEDLINE | ID: mdl-11566395

ABSTRACT

Quantitative analyses of fast- and slow-growing soybean rhizobia populations in soils of four different provinces of China (Hubei, Shan Dong, Henan, and Xinjiang) have been carried out using the most probable number technique (MPN). All soils contained fast- (FSR) and slow-growing (SSR) soybean rhizobia. Asiatic and American soybean cultivars grown at acid, neutral and alkaline pH were used as trapping hosts for FSR and SSR strains. The estimated total indigenous soybean-rhizobia populations of the Xinjiang and Shan Dong soil samples greatly varied with the different soybean cultivars used. The soybean cultivar and the pH at which plants were grown also showed clear effects on the FSR/SSR rations isolated from nodules. Results of competition experiments between FSR and SSR strains supported the importance of the soybean cultivar and the pH on the outcome of competition for nodulation between FSR and SSR strains. In general, nodule occupancy by FSRs significantly increased at alkaline pH. Bacterial isolates from soybean cultivar Jing Dou 19 inoculated with Xinjiang soil nodulate cultivars Heinong 33 and Williams very poorly. Plasmid and lipopolysaccharide (LPS) profiles and PCR-RAPD analyses showed that cultivar Jing Dou 19 had trapped a diversity of FSR strains. Most of the isolates from soybean cultivar Heinong 33 inoculated with Xinjiang soil were able to nodulate Heinong 33 and Williams showed very similar, or identical, plasmid, LPS and PCR-RAPD profiles. All the strains isolated from Xinjiang province, regardless of the soybean cultivar used for trapping, showed similar nodulation factor (LCO) profiles as judged by thin layer chromatographic analyses. These results indicate that the existence of soybean rhizobia sub-populations showing marked cultivar specificity, can affect the estimation of total soybean rhizobia populations indigenous to the soil, and can also affect the diversity of soybean rhizobial strains isolated from soybean nodules.


Subject(s)
Glycine max/microbiology , Glycine max/physiology , Rhizobiaceae/physiology , China , Hydrogen-Ion Concentration , Nitrogen Fixation , Soil Microbiology
16.
Mol Plant Microbe Interact ; 14(7): 839-47, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11437257

ABSTRACT

In the symbiosis of leguminous plants and Rhizobium bacteria, nodule primordia develop in the root cortex. This can be either in the inner cortex (indeterminate-type of nodulation) or outer cortex (determinate-type of nodulation), depending upon the host plant. We studied and compared early nodulation stages in common bean (Phaseolus vulgaris) and Lotus japonicus, both known as determinate-type nodulation plants. Special attention was paid to the occurrence of cytoplasmic bridges, the influence of rhizobial Nod factors (lipochitin oligosaccharides [LCOs]) on this phenomenon, and sensitivity of the nodulation process to ethylene. Our results show that i) both plant species form initially broad, matrix-rich infection threads; ii) cytoplasmic bridges occur in L. japonicus but not in bean; iii) formation of these bridges is induced by rhizobial LCOs; iv) formation of primordia starts in L. japonicus in the middle root cortex and in bean in the outer root cortex; and v) in the presence of the ethylene-biosynthesis inhibitor aminoethoxyvinylglycine (AVG), nodulation of L. japonicus is stimulated when the roots are grown in the light, which is consistent with the role of cytoplasmic bridges during nodulation of L. japonicus.


Subject(s)
Fabaceae/growth & development , Fabaceae/microbiology , Glycine/analogs & derivatives , Plant Roots/growth & development , Plant Roots/microbiology , Ethylenes/biosynthesis , Fabaceae/cytology , Glycine/pharmacology , Lipopolysaccharides/pharmacology , Lotus/cytology , Lotus/growth & development , Lotus/microbiology , Phaseolus/cytology , Phaseolus/growth & development , Phaseolus/microbiology , Plant Roots/cytology , Plant Roots/drug effects , Rhizobium/physiology , Symbiosis
17.
J Bacteriol ; 183(11): 3408-16, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11344149

ABSTRACT

The products of the rhizobial nodulation genes are involved in the biosynthesis of lipochitin oligosaccharides (LCOs), which are host-specific signal molecules required for nodule formation. The presence of an O-acetyl group on C-6 of the nonreducing N-acetylglucosamine residue of LCOs is due to the enzymatic activity of NodL. Here we show that transfer of the nodL gene into four rhizobial species that all normally produce LCOs that are not modified on C-6 of the nonreducing terminal residue results in production of LCOs, the majority of which have an acetyl residue substituted on C-6. Surprisingly, in transconjugant strains of Mesorhizobium loti, Rhizobium etli, and Rhizobium tropici carrying nodL, such acetylation of LCOs prevents the endogenous nodS-dependent transfer of the N-methyl group that is found as a substituent of the acylated nitrogen atom. To study this interference between nodL and nodS, we have cloned the nodS gene of M. loti and used its product in in vitro experiments in combination with purified NodL protein. It has previously been shown that a chitooligosaccharide N deacetylated on the nonreducing terminus (the so-called NodBC metabolite) is the preferred substrate for NodS as well as for NodL. Here we show that the NodBC metabolite, acetylated by NodL, is not used by the NodS protein as a substrate while the NodL protein can acetylate the NodBC metabolite that has been methylated by NodS.


Subject(s)
Acetyltransferases/metabolism , Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Methyltransferases/metabolism , Rhizobium/enzymology , Bacterial Proteins/genetics , Carbon Radioisotopes/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Lipopolysaccharides/chemistry , Methionine/analogs & derivatives , Methyltransferases/genetics , Molecular Sequence Data , Plasmids , Rhizobium/genetics
18.
Arch Microbiol ; 175(2): 152-60, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11285743

ABSTRACT

The highly conserved nod box sequence in the promoters of the inducible nodulation genes of rhizobia is required for transcription activation together with NodD, a LysR-type transcriptional regulator, and a flavonoid as a coinducer. DNA fragments containing nod box sequences form two binding complexes when crude preparations of Rhizobium leguminosarum bv. viciae are used: a NodD-dependent and an additional, NodD-independent complex. The role of individual nucleotides in the conserved nod box sequence in complex formation and in nodulation gene expression was investigated by introducing 13 individual base-pair substitutions in the nodF nod box of R. leguminosarum bv. viciae and studying their effect on promoter activity and protein-DNA complex formation. Two mutants showed decreased NodD binding and decreased promoter activity. Five mutants showed a NodD-dependent complex as with the wild-type nodF nod box, whereas their promoter activity was severely reduced after induction. This result is in agreement with earlier observations that NodD DNA binding also occurs in the absence of inducer. Four mutants were impaired in the formation of the NodD-independent retardation complex. Three of them showed no alterations in promoter activity, meaning that no specific role for the protein forming the NodD-independent complex could be established. The two mutants in the highly conserved LysR motif of the nod box were unable to direct coinducer-dependent promoter activity but, unexpectedly, their retardation patterns were not altered. The remaining two mutants showed constitutive promoter activity. The results are discussed in terms of the relevance of conserved nucleotides and motifs identified in the nod box.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Promoter Regions, Genetic , Rhizobium leguminosarum/genetics , Transcriptional Activation , Electrophoresis, Polyacrylamide Gel , Genes, Bacterial , Mutagenesis, Site-Directed , Operon , Protein Binding , Rhizobium leguminosarum/metabolism , Transcription, Genetic
19.
Curr Opin Struct Biol ; 11(5): 608-16, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11785763

ABSTRACT

Chitin oligosaccharides and their derivatives are involved in developmental and defence-related signalling pathways. Major advances include the structural identification of lectins involved in development that bind chitin oligosaccharides and the links between chitin oligosaccharide and hyaluronan synthesis. Also, recent advances in the understanding of the biological role of oligosaccharides are summarised in a model for multistep glycan recognition.


Subject(s)
Oligosaccharides/biosynthesis , Proteins/metabolism , Amino Acid Sequence , Animals , Apyrase/metabolism , Carbohydrate Sequence , Chitin/biosynthesis , Chitin/chemistry , Chitinases/genetics , Chitinases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Growth , Humans , Lectins/metabolism , Models, Biological , Molecular Sequence Data , Oligosaccharides/chemistry , Plant Development , Plant Lectins , Proteoglycans/biosynthesis , Proteoglycans/chemistry , Receptors, Transforming Growth Factor beta/biosynthesis , Receptors, Transforming Growth Factor beta/chemistry , Sequence Homology, Amino Acid , Signal Transduction
20.
Mol Plant Microbe Interact ; 13(11): 1163-9, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11059482

ABSTRACT

We developed two sets of broad-host-range vectors that drive expression of the green fluorescent protein (GFP) or color variants thereof (henceforth collectively called autofluorescent proteins [AFPs]) from the lac promoter. These two sets are based on different replicons that are maintained in a stable fashion in Escherichia coli and rhizobia. Using specific filter sets or a dedicated confocal laser scanning microscope setup in which emitted light is split into its color components through a prism, we were able to unambiguously identify bacteria expressing enhanced cyan fluorescent protein (ECFP) or enhanced yellow fluorescent protein (EYFP) in mixtures of the two. Clearly, these vectors will be valuable tools for competition, cohabitation, and rescue studies and will also allow the visualization of interactions between genetically marked bacteria in vivo. Here, we used these vectors to visualize the interaction between rhizobia and plants. Specifically, we found that progeny from different rhizobia can be found in the same nodule or even in the same infection thread. We also visualized movements of bacteroids within plant nodule cells.


Subject(s)
Bacteriological Techniques , Luminescent Proteins/isolation & purification , Plant Roots/microbiology , Rhizobiaceae/isolation & purification , Symbiosis , Color , Genetic Vectors , Luminescent Proteins/genetics , Microscopy, Confocal , Microscopy, Fluorescence , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...