Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Inflamm Res ; 17: 1295-1323, 2024.
Article in English | MEDLINE | ID: mdl-38434581

ABSTRACT

Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).

2.
PLoS One ; 19(2): e0298112, 2024.
Article in English | MEDLINE | ID: mdl-38346040

ABSTRACT

BACKGROUND: Microbial biofilms, as a hallmark of cystic fibrosis (CF) lung disease and other chronic infections, remain a desirable target for antimicrobial therapy. These biopolymer-based viscoelastic structures protect pathogenic organisms from immune responses and antibiotics. Consequently, treatments directed at disrupting biofilms represent a promising strategy for combating biofilm-associated infections. In CF patients, the viscoelasticity of biofilms is determined mainly by their polymicrobial nature and species-specific traits, such as Pseudomonas aeruginosa filamentous (Pf) bacteriophages. Therefore, we examined the impact of microbicidal ceragenins (CSAs) supported by mucolytic agents-DNase I and poly-aspartic acid (pASP), on the viability and viscoelasticity of mono- and bispecies biofilms formed by Pf-positive and Pf-negative P. aeruginosa strains co-cultured with Staphylococcus aureus or Candida albicans. METHODS: The in vitro antimicrobial activity of ceragenins against P. aeruginosa in mono- and dual-species cultures was assessed by determining minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Inhibition of P. aeruginosa mono- and dual-species biofilms formation by ceragenins alone and in combination with DNase I or poly-aspartic acid (pASP) was estimated by the crystal violet assay. Additionally, the viability of the biofilms was measured by colony-forming unit (CFU) counting. Finally, the biofilms' viscoelastic properties characterized by shear storage (G') and loss moduli (G"), were analyzed with a rotational rheometer. RESULTS: Our results demonstrated that ceragenin CSA-13 inhibits biofilm formation and increases its fluidity regardless of the Pf-profile and species composition; however, the Pf-positive biofilms are characterized by elevated viscosity and elasticity parameters. CONCLUSION: Due to its microbicidal and viscoelasticity-modifying properties, CSA-13 displays therapeutic potential in biofilm-associated infections, especially when combined with mucolytic agents.


Subject(s)
Anti-Infective Agents , Cystic Fibrosis , Pseudomonas Infections , Steroids , Humans , Pseudomonas aeruginosa , Aspartic Acid , Expectorants , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Deoxyribonuclease I , Microbial Sensitivity Tests
3.
Pol Merkur Lekarski ; 50(297): 166-171, 2022 Jun 24.
Article in Polish | MEDLINE | ID: mdl-35801598

ABSTRACT

The spreading pandemic, successive waves and increasingly inefficient hospital care system contributed to the analysis and inclusion of lung ultrasonography (LUS) in the COVID-19 diagnostic process, which is faster, cheaper, more available and safer method for patients. It is also the method of choice for pregnant women and children. AIM: The aim of this study was to analyze the effectiveness of lung ultrasound in the diagnostic process, its predictive value and its comparison with computed tomography (CT) of the chest. MATERIALS AND METHODS: A literature review was conducted with keyword in the title and abstracts in the Pubmed National Library of Medicine database. RESULTS: Twenty papers were reviewed which showed a high consistency in CT and ultrasound image evaluation, particularly in the inferolateral and posterior lung areas. The association between LUS and CT images with disease severity has also been demonstrated, which translates into the predictive value of these studies related to hospitalization, use of invasive and non-invasive mechanical ventilation, and mortality in COVID-19 patients. An association between the stage of disease severity assessed by LUS and elevated levels of inflammatory markers were revealed. In addition, lung ultrasound showed high sensitivity in the early stages of the disease. CONCLUSIONS: Ultrasound performed by appropriately trained staff is a good diagnostic and prognostic tool in the Hospital Emergency Department and Intensive Care Unit. Nevertheless, due to the subjectivity and technical limitations of this study, this method needs further research.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Child , Female , Humans , Lung/diagnostic imaging , Pregnancy , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Ultrasonography/methods
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269718

ABSTRACT

For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.


Subject(s)
Biocompatible Materials , Otolaryngology , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Ceramics , Humans , Polymers , Tissue Scaffolds
5.
Nanomedicine (Lond) ; 16(30): 2657-2678, 2021 12.
Article in English | MEDLINE | ID: mdl-34823374

ABSTRACT

Aim: To evaluate the antibacterial and antibiofilm activity of ceragenin-conjugated nonspherical gold nanoparticles against the most common agents of otitis media. Methods: Minimal inhibitory and bactericidal concentrations and colony-counting assays, as well as colorimetric and fluorimetric methods, were used to estimate the antibacterial activity of compounds in phosphate-buffered saline and human cerumen. The nanosystems' biocompatibility and ability to decrease IL-8 release was tested using keratinocyte cells. Results: The tested compounds demonstrated strong antimicrobial activity against planktonic and biofilm cultures at nontoxic doses due to the induction of oxidative stress followed by the damage of bacterial membranes. Conclusion: This study indicates that ceragenin-conjugated nonspherical gold nanoparticles have potential as new treatment methods for eradicating biofilm-forming pathogens associated with otitis media.


Lay abstract Middle-ear infections can be painful and cause hearing difficulties. If untreated, they can lead to hearing loss. These infections are usually treated with antibiotic drugs. However, the microbes causing the infection can gain drug resistance. This article reports research into a new way of delivering antibiotics to kill the microbes and the communities they form (biofilms). The authors developed tiny gold particles loaded with the antimicrobial drug ceragenin and tested the drug-loaded particles on three common middle-ear infection-causing bacteria. Compared with ceragenin alone, the ceragenin-loaded particles were better at killing the bacteria and their biofilm communities.


Subject(s)
Metal Nanoparticles , Otitis Media , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Gold , Humans , Microbial Sensitivity Tests , Otitis Media/drug therapy , Steroids
6.
Pathogens ; 10(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34832527

ABSTRACT

This study aimed to investigate the potential application of ceragenins (CSAs) as new candidacidal agents to prevent biofilm formation on voice prostheses (VPs). The deterioration of the silicone material of VPs is caused by biofilm growth on the device which leads to frequent replacement procedures and sometimes serious complications. A significant proportion of these failures is caused by Candida species. We found that CSAs have significant candidacidal activities in vitro (MIC; MFC; MBIC), and they effectively eradicate species of yeast responsible for VP failure. Additionally, in our in vitro experimental setting, when different Candida species were subjected to CSA-13 and CSA-131 during 25 passages, no tested Candida strain showed the significant development of resistance. Using liquid chromatography-mass spectrometry (LC-MS), we found that VP immersion in an ethanol solution containing CSA-131 results in silicon impregnation with CSA-131 molecules, and in vitro testing revealed that fungal biofilm formation on such VP surfaces was inhibited by embedded ceragenins. Future in vivo studies will validate the use of ceragenin-coated VP for improvement in the life quality and safety of patients after a total laryngectomy.

7.
Pathogens ; 9(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993180

ABSTRACT

Voice prosthesis implantation with the creation of a tracheoesophageal fistula is the gold standard procedure for voice rehabilitation in patients after a total laryngectomy. All patients implanted with a voice prosthesis (VP) have biofilms of fungi and bacteria grow on their surface. Biofilm colonization is one of the main reasons for VP degradation that can lead to VP dysfunction, which increases the high risk of pneumonia. In a 20-month evaluation period, 129 cases of prostheses after replacement procedures were investigated. Microbiological examination of the biofilms revealed that there were four of the most common fungi species (Candida spp.) and a large variety of bacterial species present. We studied the relationship between the time of proper function of Provox VP, the microorganism composition of the biofilm present on it, and the degradation level of the silicone material. Evaluation of the surface of the removed VP using an atomic force microscope (AFM) has demonstrated that biofilm growth might drastically change the silicone's mechanical properties. Changes in silicone stiffness and thermal properties might contribute to the failure of VP function. Our data can serve in future studies for the development of methods to prevent or inhibit biofilm formation on the VP surface that would translate to an increase in their durability and safety.

SELECTION OF CITATIONS
SEARCH DETAIL
...