Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Space Res ; 67(7): 2140-2150, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33723470

ABSTRACT

Leveraging the COVID-19 India-wide lockdown situation, the present study attempts to quantify the reduction in the ambient fine particulate matter concentrations during the lockdown (compared with that of the pre-lockdown period), owing to the highly reduced specific anthropogenic activities and thereby pollutant emissions. The study was conducted over Bengaluru (India), using PM2.5 (mass concentration of particulate matter having size less than or equal to 2.5 µm) and Black Carbon mass concentration (BC) data. Open-access datasets from pollution control board (PCB) were also utilised to understand the spatial variability and region-specific reduction in PM2.5 across the city. The highest percentage reduction was observed in BCff (black carbon attributable to fossil fuel combustion), followed by total BC and PM2.5. No decrease in BCbb (black carbon attributable to wood/biomass burning) was observed, suggesting unaltered wood-based cooking activities and biomass-burning (local/regional) throughout the study period. Results support the general understanding of multi-source (natural and anthropogenic) nature of PM2.5 in contrast to limited-source (combustion based) nature of BC. The diurnal amplitudes in BC and BCff were reduced, while they remained almost the same for PM2.5 and BCbb. Analysis of PCB data reveal the highest reduction in PM2.5 in an industrial cluster area. The current lockdown situation acted as a natural model to understand the role of a few major anthropogenic activities (viz., traffic, construction, industries related to non-essential goods, etc.) in enhancing the background fine particulate matter levels. Contemporary studies reporting reduction in surface fine particulate matter and satellite retrieved columnar Aerosol Optical Depth (AOD) during COVID-19 lockdown period are discussed.

2.
Appl Biochem Biotechnol ; 168(6): 1594-607, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22971833

ABSTRACT

Microsatellites, also known as simple sequence repeats (SSRs), are the class of repetitive DNA sequences present throughout the genome of many plant and animal species. Recent advances in molecular genetics had been the introduction of microsatellite markers to investigate the genetic structuring of natural plant populations. We have employed an enrichment strategy for microsatellite isolation by using multi-enzymes digestion, microsatellite oligoprobes, and streptavidin magnetic beads in Sesamum (Sesamum indicum L.). More than 200 SSR motifs were detected (SSR motifs ≥2 repeat units or 6 bp); 80 % of the clones contained SSR motifs. When regarding SSRs with four or more repeat units and a minimum length of 10 bp, 132 of them showed repeats. Eighteen SSR markers were initially characterized for optimum annealing temperature using a gradient PCR technique. Among the 18 SSR markers characterized, five were found to be polymorphic and used to analyze 60 Sesamum germplasm accessions. The maximum number of alleles detected was four with a single primer and the least number of two alleles with three primers with an average PIC value of 0.77. SSRs are a valuable tool for estimating genetic diversity and analyzing the evolutionary and historical development of cultivars at the genomic level in sesame breeding programs.


Subject(s)
DNA, Plant/genetics , Microsatellite Repeats , Polymerase Chain Reaction/methods , Sesamum/genetics , Genetic Variation , Genome, Plant , Polymorphism, Genetic , Sesamum/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...