Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 939834, 2022.
Article in English | MEDLINE | ID: mdl-36120551

ABSTRACT

In algae and land plants, transport of fatty acids (FAs) from their site of synthesis in the plastid stroma to the endoplasmic reticulum (ER) for assembly into acyl lipids is crucial for cellular lipid homeostasis, including the biosynthesis of triacylglycerol (TAG) for energy storage. In the unicellular green alga Chlamydomonas reinhardtii, understanding and engineering of these processes is of particular interest for microalga-based biofuel and biomaterial production. Whereas in the model plant Arabidopsis thaliana, FAX (fatty acid export) proteins have been associated with a function in plastid FA-export and hence TAG synthesis in the ER, the knowledge on the function and subcellular localization of this protein family in Chlamydomonas is still scarce. Among the four FAX proteins encoded in the Chlamydomonas genome, we found Cr-FAX1 and Cr-FAX5 to be involved in TAG production by functioning in chloroplast and ER membranes, respectively. By in situ immunolocalization, we show that Cr-FAX1 inserts into the chloroplast envelope, while Cr-FAX5 is located in ER membranes. Severe reduction of Cr-FAX1 or Cr-FAX5 proteins by an artificial microRNA approach results in a strong decrease of the TAG content in the mutant strains. Further, overexpression of chloroplast Cr-FAX1, but not of ER-intrinsic Cr-FAX5, doubled the content of TAG in Chlamydomonas cells. We therefore propose that Cr-FAX1 in chloroplast envelopes and Cr-FAX5 in ER membranes represent a basic set of FAX proteins to ensure shuttling of FAs from chloroplasts to the ER and are crucial for oil production in Chlamydomonas.

2.
J Exp Bot ; 73(1): 245-262, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34436580

ABSTRACT

While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.


Subject(s)
Chlamydomonas , Photosystem II Protein Complex , Chlamydomonas/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism
3.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166613

ABSTRACT

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chlamydomonas/metabolism , Protein Multimerization , Synechocystis/metabolism , Thylakoids/metabolism , Amino Acid Sequence , Bacterial Proteins/ultrastructure , Binding Sites , Cell Membrane/metabolism , Chlamydomonas/ultrastructure , Cryoelectron Microscopy , Green Fluorescent Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Light , Lipids/chemistry , Models, Molecular , Nucleotides/metabolism , Protein Binding , Protein Structure, Secondary , Stress, Physiological/radiation effects , Synechocystis/ultrastructure , Thylakoids/ultrastructure
4.
Plant Physiol ; 181(4): 1480-1497, 2019 12.
Article in English | MEDLINE | ID: mdl-31604811

ABSTRACT

Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent Ser endopeptidases that perform key aspects of protein quality control in all domains of life. Here, we characterized Chlamydomonas reinhardtii DEG1C, which together with DEG1A and DEG1B is orthologous to Arabidopsis (Arabidopsis thaliana) Deg1 in the thylakoid lumen. We show that DEG1C is localized to the stroma and the periphery of thylakoid membranes. Purified DEG1C exhibited high proteolytic activity against unfolded model substrates and its activity increased with temperature and pH. DEG1C forms monomers, trimers, and hexamers that are in dynamic equilibrium. DEG1C protein levels increased upon nitrogen, sulfur, and phosphorus starvation; under heat, oxidative, and high light stress; and when Sec-mediated protein translocation was impaired. DEG1C depletion was not associated with any obvious aberrant phenotypes under nonstress conditions, high light exposure, or heat stress. However, quantitative shotgun proteomics revealed differences in the abundance of 307 proteins between a deg1c knock-out mutant and the wild type under nonstress conditions. Among the 115 upregulated proteins are PSII biogenesis factors, FtsH proteases, and proteins normally involved in high light responses, including the carbon dioxide concentrating mechanism, photorespiration, antioxidant defense, and photoprotection. We propose that the lack of DEG1C activity leads to a physiological state of the cells resembling that induced by high light intensities and therefore triggers high light protection responses.


Subject(s)
Acclimatization/radiation effects , Chlamydomonas/genetics , Chlamydomonas/radiation effects , Light , Mutation/genetics , Plant Proteins/genetics , Acetates/metabolism , Hydrogen-Ion Concentration , Models, Biological , Phenotype , Photosynthesis/radiation effects , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Folding/radiation effects , Protein Multimerization , Proteolysis/radiation effects , Stress, Physiological/radiation effects , Subcellular Fractions/metabolism , Subcellular Fractions/radiation effects , Substrate Specificity/radiation effects , Temperature , Thylakoids/metabolism , Thylakoids/radiation effects
5.
ACS Synth Biol ; 7(9): 2074-2086, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30165733

ABSTRACT

Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Photosynthesis , Plasmids/metabolism , Synthetic Biology/methods , Biotechnology , Chlamydomonas reinhardtii/genetics , Gene Expression , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plasmids/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...