Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sports (Basel) ; 4(1)2016 Feb 25.
Article in English | MEDLINE | ID: mdl-29910262

ABSTRACT

The purpose of this study is to provide descriptive and comparative information regarding the cardiorespiratory fitness of professional baseball pitchers. Twenty-four (n = 24) major league (ML) baseball pitchers (starters n = 14; relievers n = 10) over seven seasons (2007⁻2013) were evaluated. A modified Bruce protocol and the CardioCoach™ CO2 metabolic analyzer were used to estimate VO2 max and anaerobic threshold (AT) at the beginning of each season. Performance data from each season was utilized to draw inference about pitching performance. One-way Analysis of Variance (ANOVA) was used to compare Starting (S) and Relief (R) pitchers above/below the group mean for VO2 max and AT. Pearson product moment correlations were also used to examine relationships between cardiorespiratory fitness and performance. Significant differences in performance were discovered between S pitchers above/below the overall group mean for VO2 max. (p ≤ 0.05) and for AT in Walks plus Hits per Inning Pitched (WHIP) (p ≤ 0.05) and Earned Run Average (ERA) (p ≤ 0.05). Significant relationships between VO2 max and Walks per 9 Innings (BB/9) (p ≤ 0.05), Home Runs per 9 innings (HR/9) (p ≤ 0.05), Wins (W) (p ≤ 0.05), Fielding Independent Pitching (FIP) (p ≤ 0.01), Strikeouts (K) (p ≤ 0.01), Hits per 9 innings (H/9) (p ≤ 0.01), Strikeouts per 9 innings (K/9) (p ≤ 0.01), ERA (p ≤ 0.01), and WHIP (p ≤ 0.01). Low, but significant, correlations were discovered between AT and WHIP (p ≤ 0.05) and ERA (≤0.05). CONCLUSION: Higher aerobic capacity appears to be more influential for S than R pitchers. Strength and conditioning practitioners should ensure that pitchers, especially S pitchers at the ML level, perform sufficient and appropriate endurance training to support pitching performance.

2.
J Strength Cond Res ; 23(4): 1338-52, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19528868

ABSTRACT

Bat swing velocity is an important characteristic of successful hitters in baseball and softball. The purpose of this literature review is threefold. First, before describing what components and training methods have been investigated to improve bat swing velocity, it is necessary to discuss the importance of bat swing velocity and batted-ball velocity. The second purpose is to discuss bat weight during on-deck circle warm-up, bat weight during resistance training, resistance training with an overload of force, performance of additional supplemental resistance exercises, the relationship between strength, power, lean body mass, and angular velocity and bat swing velocity, and the relationship between improvements in strength, power, lean body mass, and angular velocity and improvements in bat swing velocity. The third purpose of this review is to recommend some practical applications based on research results.


Subject(s)
Arm/physiology , Baseball/physiology , Muscle Strength/physiology , Resistance Training/methods , Acceleration , Humans , Sports Equipment
3.
J Strength Cond Res ; 21(2): 481-6, 2007 May.
Article in English | MEDLINE | ID: mdl-17530952

ABSTRACT

The objective of this investigation was to examine the physical and performance characteristics of adolescent club volleyball players. Twenty-nine adolescent girls, aged 12 to 17 years (14.31 +/- 1.37) were participants in this investigation. All athletes were members of a competitive volleyball club. The following group values were obtained: height (HT) = 1.69 +/- 0.08 m, weight (WT) = 59.6 +/- 8.2 kg, body fat percentage (BF%) = 20.9 +/- 4.5, lean body mass (LBM) = 46.7 +/- 4.9 kg, modified sit-and-reach (MSR) = 38.7 +/- 7.1 cm, shoulder rotation (SR) = 29.4 +/- 5.6 cm, isometric hand grip (IHG) = 34.5 +/- 5.5 kg, isometric leg strength (ILS) = 77.4 +/- 18.1 kg, vertical jump (VJ) = 35.5 +/- 6.2 cm, standing broad jump (SBJ) =178.8 +/- 20.3 cm, 1-minute sit-ups (SU) = 47.0 +/- 6.7, T-test (TT) = 11.2 +/- 0.8 seconds., shuttle test (SHT) = 9.7 +/- 0.4 seconds, stork stand (SS) = 8.1 +/- 4.1 seconds, serving velocity (SVV) =16.1 +/- 4.5 m.s(-1), and spiking velocity (SKV) = 16.9 +/- 2.4 m.s(-1). For purposes of analysis, players were divided into 2 age groups: 12 to 14 years (group A) and 15 to 17 years (group B). Significant differences (p < 0.05) were found between age groups for the following values: HT, WT, LBM, IHG, ILS, SBJ, and SVV. Values for group B were greater for each variable. Significant correlations include age and IHG (r = 0.75), age and ILS (r = 0.51), age and SBJ (r = 0.67), age and SVV (r = 0.71), LBM and IHG (r = 0.90), LBM and ILS (r = 0.62), LBM and SVV (r = 0.58), SVV and IHG (r = 0.60), and SKV and SS (r = 0.60). Our results suggest that age, experience, LBM, shoulder, hip, and thigh girths, strength, and balance are key physical performance characteristics of adolescent girls who play volleyball. Potentially, this type of information will allow coaches and athletes to identify physical and performance data specific to age groups for purposes of evaluation and player development.


Subject(s)
Sports/physiology , Adolescent , Anthropometry , Female , Humans , Muscle Strength/physiology , Physical Fitness/physiology , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...