Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422374

ABSTRACT

Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).

2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36861375

ABSTRACT

Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.


Subject(s)
Denitrification , Paracoccus , Phylogeny , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Genomics , Paracoccus/genetics , Formaldehyde
3.
Article in English | MEDLINE | ID: mdl-34016249

ABSTRACT

A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas. The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes. Computation of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.


Subject(s)
Grassland , Phylogeny , Pseudomonas/classification , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Germany , Nitrates/metabolism , Nucleic Acid Hybridization , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...