Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373751

ABSTRACT

Sleep disturbance can occur when sleep centers of the brain, regions that are responsible for coordinating and generating healthy amounts of sleep, are disrupted by glioma growth or surgical resection. Several disorders cause disruptions to the average duration, quality, or patterns of sleep, resulting in sleep disturbance. It is unknown whether specific sleep disorders can be reliably correlated with glioma growth, but there are sufficient numbers of case reports to suggest that a connection is possible. In this manuscript, these case reports and retrospective chart reviews are considered in the context of the current primary literature on sleep disturbance and glioma diagnosis to identify a new and useful connection which warrants further systematic and scientific examination in preclinical animal models. Confirmation of the relationship between disruption of the sleep centers in the brain and glioma location could have significant implications for diagnostics, treatment, monitoring of metastasis/recurrence, and end-of-life considerations.

2.
Front Cell Neurosci ; 16: 1055490, 2022.
Article in English | MEDLINE | ID: mdl-36451654

ABSTRACT

Segmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points. Such injuries present additional complexity compared to linear segmental defects. This study compared outcomes following ablation of a branch point with branched grafts, specifically examining how graft source and orientation of the branched graft contributed to regeneration. The model system was Lewis rats that underwent a 2.5 cm ablation that started in the sciatic nerve trunk and included the peroneal/tibial branch point. Rats received grafts that were rat sciatic autograft, inbred sciatic allograft, and inbred femoral allograft, each of which was a branched graft of 2.5 cm. Allografts were obtained from Lewis rats, which is an inbred strain. Both branches of the sciatic grafts were mixed motor and sensory while the femoral grafts were smaller in diameter than sciatic grafts and one branch of the femoral graft is sensory and the other motor. All branched grafts were sutured into the defect in two orientations dictated by which branch in the graft was sutured to the tibial vs peroneal stumps in recipients. Outcome measures include compound muscle action potentials (CMAPs) and CatWalk gait analysis throughout the recovery period, with toluidine blue for intrinsic nerve morphometry and retrograde labeling conducted at the 36-week experimental end point. Results indicate that graft source and orientation does play a significant role earlier in the regenerative process but by 36 weeks all groups showed very similar indications of regeneration across multiple outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...