Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Plant Biotechnol J ; 21(2): 405-418, 2023 02.
Article in English | MEDLINE | ID: mdl-36373224

ABSTRACT

Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.


Subject(s)
CRISPR-Cas Systems , Triticum , Triticum/genetics , CRISPR-Cas Systems/genetics , Plant Breeding , Chromosomes , Meiosis/genetics
2.
Plants (Basel) ; 10(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34371684

ABSTRACT

CRISPR/Cas technology has recently become the molecular tool of choice for gene function studies in plants as well as crop improvement. Wheat is a globally important staple crop with a well annotated genome and there is plenty of scope for improving its agriculturally important traits using genome editing technologies, such as CRISPR/Cas. As part of this study we targeted three different genes in hexaploid wheat Triticum aestivum: TaBAK1-2 in the spring cultivar Cadenza as well as Ta-eIF4E and Ta-eIF(iso)4E in winter cultivars Cezanne, Goncourt and Prevert. Primary transgenic lines carrying CRISPR/Cas-induced indels were successfully generated for all targeted genes. While BAK1 is an important regulator of plant immunity and development, Ta-eIF4E and Ta-eIF(iso)4E act as susceptibility (S) factors required for plant viruses from the Potyviridae family to complete their life cycle. We anticipate the resultant homozygous tabak1-2 mutant lines will facilitate studies on the involvement of BAK1 in immune responses in wheat, while ta-eif4e and ta-eif(iso)4e mutant lines have the potential to become a source of resistance to wheat spindle streak mosaic virus (WSSMV) and wheat yellow mosaic virus (WYMV), both of which are important pathogens of wheat. As winter wheat varieties are generally less amenable to genetic transformation, the successful experimental methodology for transformation and genome editing in winter wheat presented in this study will be of interest to the research community working with this crop.

3.
PLoS One ; 16(2): e0246763, 2021.
Article in English | MEDLINE | ID: mdl-33606697

ABSTRACT

Amino acids are delivered into developing wheat grains to support the accumulation of storage proteins in the starchy endosperm, and transporters play important roles in regulating this process. RNA-seq, RT-qPCR, and promoter-GUS assays showed that three amino acid transporters are differentially expressed in the endosperm transfer cells (TaAAP2), starchy endosperm cells (TaAAP13), and aleurone cells and embryo of the developing grain (TaAAP21), respectively. Yeast complementation revealed that all three transporters can transport a broad spectrum of amino acids. RNAi-mediated suppression of TaAAP13 expression in the starchy endosperm did not reduce the total nitrogen content of the whole grain, but significantly altered the composition and distribution of metabolites in the starchy endosperm, with increasing concentrations of some amino acids (notably glutamine and glycine) from the outer to inner starchy endosperm cells compared with wild type. Overexpression of TaAAP13 under the endosperm-specific HMW-GS (high molecular weight glutenin subunit) promoter significantly increased grain size, grain nitrogen concentration, and thousand grain weight, indicating that the sink strength for nitrogen transport was increased by manipulation of amino acid transporters. However, the total grain number was reduced, suggesting that source nitrogen remobilized from leaves is a limiting factor for productivity. Therefore, simultaneously increasing loading of amino acids into the phloem and delivery to the spike would be required to increase protein content while maintaining grain yield.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Edible Grain/metabolism , Triticum/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Chromatography, High Pressure Liquid , Edible Grain/growth & development , Endosperm/metabolism , Gene Expression Regulation, Plant , Glutens/genetics , Glutens/metabolism , Magnetic Resonance Spectroscopy , Nitrogen/metabolism , Phloem/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic , RNA Interference , RNA-Seq , Real-Time Polymerase Chain Reaction , Triticum/genetics , Up-Regulation
4.
Plant Biotechnol J ; 19(8): 1602-1613, 2021 08.
Article in English | MEDLINE | ID: mdl-33638281

ABSTRACT

Free asparagine is the precursor for acrylamide, which forms during the baking, toasting and high-temperature processing of foods made from wheat. In this study, CRISPR/Cas9 was used to knock out the asparagine synthetase gene, TaASN2, of wheat (Triticum aestivum) cv. Cadenza. A 4-gRNA polycistronic gene was introduced into wheat embryos by particle bombardment and plants were regenerated. T1 plants derived from 11 of 14 T0 plants were shown to carry edits. Most edits were deletions (up to 173 base pairs), but there were also some single base pair insertions and substitutions. Editing continued beyond the T1 generation. Free asparagine concentrations in the grain of plants carrying edits in all six TaASN2 alleles (both alleles in each genome) were substantially reduced compared with wildtype, with one plant showing a more than 90 % reduction in the T2 seeds. A plant containing edits only in the A genome alleles showed a smaller reduction in free asparagine concentration in the grain, but the concentration was still lower than in wildtype. Free asparagine concentration in the edited plants was also reduced as a proportion of the free amino acid pool. Free asparagine concentration in the T3 seeds remained substantially lower in the edited lines than wildtype, although it was higher than in the T2 seeds, possibly due to stress. In contrast, the concentrations of free glutamine, glutamate and aspartate were all higher in the edited lines than wildtype. Low asparagine seeds showed poor germination but this could be overcome by exogenous application of asparagine.


Subject(s)
Aspartate-Ammonia Ligase , Triticum , Asparagine/metabolism , Aspartate-Ammonia Ligase/genetics , CRISPR-Cas Systems/genetics , Edible Grain/metabolism , Gene Editing , Triticum/genetics , Triticum/metabolism
5.
Methods Mol Biol ; 2124: 229-250, 2020.
Article in English | MEDLINE | ID: mdl-32277457

ABSTRACT

The following protocol describes the genetic transformation of wheat using the BioRad PDS/1000-He particle delivery system. Immature embryos are isolated 12-16 days post-anthesis, the embryonic axis is removed, and the immature scutella are precultured for 1-2 days prior to particle bombardment. Gold particles are coated with plasmid DNA containing the gene(s) of interest plus a selectable marker gene, in this instance bar (bialaphos resistance), and are fired into the cells to deliver the DNA. Subsequent tissue culture and regeneration steps allow recovery of plantlets, assisted by the inclusion of PPT (phosphinothricin tripeptide), the active ingredient of glufosinate-ammonium containing herbicides, to help select transformants. This updated method introduces selection earlier in the regeneration process which provides a shortened protocol while maintaining high transformation efficiencies.


Subject(s)
Biolistics/methods , Transformation, Genetic , Triticum/genetics , DNA, Plant/genetics , Gold/chemistry , Plants, Genetically Modified , Regeneration , Sterilization
6.
Plant Physiol ; 181(2): 471-479, 2019 10.
Article in English | MEDLINE | ID: mdl-31366720

ABSTRACT

Rubisco catalyzes the fixation of CO2 into organic compounds that are used for plant growth and the production of agricultural products, and specific sugar-phosphate derivatives bind tightly to the active sites of Rubisco, locking the enzyme in a catalytically inactive conformation. 2-carboxy-d-arabinitol-1-phosphate phosphatase (CA1Pase) dephosphorylates such tight-binding inhibitors, contributing to the maintenance of Rubisco activity. Here, we investigated the hypothesis that overexpressing ca1pase would decrease the abundance of Rubisco inhibitors, thereby increasing the activity of Rubisco and enhancing photosynthetic performance and productivity in wheat (Triticum aestivum). Plants of four independent wheat transgenic lines overexpressing ca1pase showed up to 30-fold increases in ca1pase expression compared to the wild type. Plants overexpressing ca1pase had lower numbers of Rubisco tight-binding inhibitors and higher Rubisco activation state than the wild type; however, there were 17% to 60% fewer Rubisco active sites in the four transgenic lines than in the wild type. The lower Rubisco content in plants overexpressing ca1pase resulted in lower initial and total carboxylating activities measured in flag leaves at the end of the vegetative stage and lower aboveground biomass and grain yield measured in fully mature plants. Hence, contrary to what would be expected, ca1pase overexpression decreased Rubisco content and compromised wheat grain yields. These results support a possible role for Rubisco inhibitors in protecting the enzyme and maintaining an adequate number of Rubisco active sites to support carboxylation rates in planta.


Subject(s)
Phosphoric Monoester Hydrolases/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Triticum/enzymology , Biomass , Plants, Genetically Modified , Ribulose-Bisphosphate Carboxylase/antagonists & inhibitors , Triticum/genetics , Triticum/growth & development
8.
Plants (Basel) ; 7(2)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597282

ABSTRACT

Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase) and the other fructose-1,6-bisphosphate aldolase (FBPA) from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza) showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

9.
New Phytol ; 217(1): 320-331, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28895153

ABSTRACT

The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Zymoseptoria tritici secretes many functionally uncharacterized effector proteins during infection. Here, we characterized a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterize Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored the impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi. We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino-acid N-terminal 'loop' region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells, but not to Z. tritici itself. Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggest that, although it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.


Subject(s)
Anti-Infective Agents/isolation & purification , Ascomycota/enzymology , Plant Diseases/microbiology , Ribonucleases/isolation & purification , Triticum/microbiology , Anti-Infective Agents/metabolism , Ascomycota/pathogenicity , Cell Death/drug effects , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Microbiota/drug effects , Mycotoxins/genetics , Mycotoxins/isolation & purification , Mycotoxins/metabolism , Plant Leaves/microbiology , Ribonucleases/genetics , Ribonucleases/metabolism
10.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28808101

ABSTRACT

To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Subject(s)
Edible Grain/genetics , Phosphoric Monoester Hydrolases/genetics , Photosynthesis , Plant Proteins/genetics , Triticum/genetics , Brachypodium/genetics , Phosphoric Monoester Hydrolases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Triticum/growth & development , Triticum/metabolism
11.
Sci Rep ; 5: 11183, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26108150

ABSTRACT

Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-ß-farnesene (Eßf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eßf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release.


Subject(s)
Pheromones/metabolism , Triticum/metabolism , Animals , Aphids/physiology , Behavior, Animal/drug effects , Gas Chromatography-Mass Spectrometry , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Plastids/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Seedlings/metabolism , Seedlings/parasitology , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Sesquiterpenes/pharmacology , Triticum/growth & development , Volatile Organic Compounds/analysis
12.
Methods Mol Biol ; 1099: 201-18, 2014.
Article in English | MEDLINE | ID: mdl-24243206

ABSTRACT

Since its first invention in the late 1980s the particle gun has evolved from a basic gunpowder driven machine firing tungsten particles to one more refined which uses helium gas as the propellant to launch alternative heavy metal particles such as gold and silver. The simple principle is that DNA-coated microscopic particles (microcarriers) are accelerated at high speed by helium gas within a vacuum and travel at such a velocity as to penetrate target cells. However, the process itself involves a range of parameters which are open to variation: microparticle type and size, gun settings (rupture pressure, target distance, vacuum drawn, etc.), preparation of components (e.g., gold coating), and preparation of plant tissues. Here is presented a method optimized for transformation of wheat immature embryos using the Bio-Rad PDS-1000/He particle gun to deliver gold particles coated with a gene of interest and the selectable marker gene bar at 650 psi rupture pressure. Following bombardment, various tissue culture phases are used to encourage embryogenic callus formation and regeneration of plantlets and subsequent selection using glufosinate ammonium causes suppression of non-transformed tissues, thus assisting the detection of transformed plants. This protocol has been used successfully to generate transgenic plants for a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).


Subject(s)
Biolistics/methods , Transformation, Genetic , Triticum/genetics , Gene Transfer Techniques , Gold , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism , Triticum/metabolism
13.
Methods Mol Biol ; 1099: 235-50, 2014.
Article in English | MEDLINE | ID: mdl-24243208

ABSTRACT

The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).


Subject(s)
Agrobacterium/genetics , Gene Transfer Techniques , Transformation, Genetic , Triticum/genetics , Agrobacterium/metabolism , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Seeds/genetics , Seeds/microbiology , Triticum/microbiology
14.
Plant Physiol ; 157(4): 1820-31, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22013218

ABSTRACT

The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation.


Subject(s)
Gibberellins/pharmacology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Triticum/growth & development , Triticum/genetics , Alleles , Amino Acid Sequence , Base Sequence , DNA, Plant/chemistry , DNA, Plant/genetics , Molecular Sequence Data , Mutation , Phenotype , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Polyploidy , RNA, Messenger/genetics , RNA, Plant/genetics , Sequence Alignment , Sequence Analysis, DNA , Triticum/metabolism , Two-Hybrid System Techniques
15.
Plant Biotechnol J ; 9(7): 788-96, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21265997

ABSTRACT

Constitutive promoters are widely used to functionally characterise plant genes in transgenic plants, but their lack of specificity and poor control over protein expression can be a major disadvantage. On the other hand, promoters that provide precise regulation of temporal or spatial transgene expression facilitate such studies by targeting over-expression or knockdown of target genes to specific tissues and/or at particular developmental stages. Here, we used the uidA (beta-glucuronidase, GUS) reporter gene to demonstrate that the barley Hvhsp17 gene promoter can be induced by heat treatment of 38-40 °C for 1-2 h in transgenic wheat. The GUS enzyme was expressed only in those tissues directly exposed to heat and not in neighbouring leaf tissues. The induction of HSP::GUS was demonstrated in all organs and tissues tested, but expression in older tissues was lower. Generally, proximal root sections showed less GUS activity than in root tips. This heat-inducible promoter provides the ability to investigate the function of candidate genes by overexpression or by down-regulation of target gene expression (for example by RNAi) in selected tissues or developmental stages of a transgenic plant, limited only by the ability to apply a heat shock to the selected tissues. It also allows the investigation of genes that would be lethal or reduce fertility if expressed constitutively.


Subject(s)
Gene Expression Regulation, Plant/genetics , Plants, Genetically Modified/physiology , Promoter Regions, Genetic/genetics , Triticum/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Down-Regulation , Genes, Reporter , Glucuronidase/genetics , Glucuronidase/metabolism , Heat-Shock Proteins/genetics , Hordeum/genetics , Hot Temperature , Organ Specificity , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/physiology , Plant Stems/cytology , Plant Stems/genetics , Plant Stems/physiology , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Pollen/cytology , Pollen/genetics , Pollen/physiology , RNA, Plant/genetics , Seeds/cytology , Seeds/genetics , Seeds/physiology , Time Factors , Tissue Distribution , Transgenes , Triticum/cytology , Triticum/genetics
16.
Plant Physiol ; 152(3): 1209-18, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20089768

ABSTRACT

(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.


Subject(s)
Endosperm/metabolism , Glucosyltransferases/metabolism , Plant Proteins/metabolism , Triticum/genetics , beta-Glucans/metabolism , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/genetics , Down-Regulation , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Plant Proteins/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Promoter Regions, Genetic , RNA Interference , Triticum/enzymology
17.
Methods Mol Biol ; 513: 131-52, 2009.
Article in English | MEDLINE | ID: mdl-19347644

ABSTRACT

Transient expression in plants is a valuable tool for many aspects of functional genomics and promoter testing. It can be used both to over-express and to silence candidate genes. It is also scaleable and provides a viable alternative to microbial fermentation and animal cell culture for the production of recombinant proteins. It does not depend on chromosomal integration of heterologous DNA so is a relatively facile procedure and can lead to high levels of transgene expression. Recombinant DNA can be introduced into plant cells via physical methods, via Agrobacterium or via viral vectors.


Subject(s)
Genetic Techniques , Plants, Genetically Modified/genetics , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Biolistics , DNA, Bacterial/administration & dosage , DNA, Bacterial/genetics , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , Gene Expression , Gene Silencing , Genetic Vectors , Plant Viruses/genetics , Plasmids/administration & dosage , Plasmids/genetics , Replicon , Transfection , Triticum/genetics
18.
Methods Mol Biol ; 513: 111-30, 2009.
Article in English | MEDLINE | ID: mdl-19347645

ABSTRACT

This chapter provides an overview of the main steps in the process to produce stably transformed plants. Most transformation methods use tissue culture to recover adult plants from regenerable explants and can be divided into three stages: (1) choice and preparation of explant tissue, (2) deoxyribonucleic acid (DNA) delivery, (3) callus induction/regeneration and selection. Each of these stages is introduced from a general perspective and a detailed protocol for our exemplar species, wheat, is given. We focus here on DNA delivery by particle bombardment as Agrobacterium-mediated transformation methods for wheat are reported elsewhere.


Subject(s)
Plants, Genetically Modified/genetics , Transformation, Genetic , Biolistics/instrumentation , Biolistics/methods , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , Genetic Techniques , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Tissue Culture Techniques/methods , Triticum/genetics
19.
Methods Mol Biol ; 478: 23-37, 2009.
Article in English | MEDLINE | ID: mdl-19009437

ABSTRACT

The low frequency and randomness of transgene integration into host cells, combined with the significant challenges of recovering whole plants from those rare events, makes the use of selectable marker genes routine in plant transformation experiments. For research applications that are unlikely to be grown in the field, strong herbicide- or antibiotic resistance is commonly used. Here we use genes conferring resistance to glufosinate herbicides as an example of a selectable marker in wheat transformation by either Agrobacterium or biolistics.


Subject(s)
Genetic Engineering/methods , Genetic Markers/genetics , Plants/genetics , Aminobutyrates/pharmacology , Avena/drug effects , Avena/genetics , Avena/growth & development , Avena/microbiology , Biolistics , Drug Resistance/genetics , Genes, Plant , Herbicides/pharmacology , Hordeum/drug effects , Hordeum/genetics , Hordeum/growth & development , Hordeum/microbiology , Plant Development , Plants/drug effects , Plants/microbiology , Plants, Genetically Modified , Rhizobium/metabolism , Triticum/drug effects , Triticum/genetics , Triticum/growth & development , Triticum/microbiology
20.
Methods Mol Biol ; 478: 71-92, 2009.
Article in English | MEDLINE | ID: mdl-19009439

ABSTRACT

We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).


Subject(s)
Biolistics/methods , Triticum/genetics , DNA, Plant/metabolism , Gold/metabolism , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...