Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Oecologia ; 117(3): 331-341, 1998 Dec.
Article in English | MEDLINE | ID: mdl-28307912

ABSTRACT

Feeding processes and energetic balance of zebra mussels were both related to the quantity and quality of natural seston. Filtration rate and pseudofeces production increased while clearance rate remained constant with increasing seston concentration. Ingestion rate, assimilation efficiency, and assimilation rate all increased with increasing food quality, measured as the ratio of organic to inorganic material in the seston. Respiration rate did not change with either food quantity or quality. As a result, scope for growth declined with decreasing food quality, and fell below 0 cal mg-1 h-1 at an organic:inorganic ratio of 0.5. The association between feeding processes and food quality appears related to a breakdown in the ability of zebra mussels to selectively ingest high-quality organic particles when the organic content of the seston is low. Ingestion, assimilation efficiency, assimilation rate and scope for growth were all higher when seston was amended with an addition of a natural assemblage of algae. Food quality may be a better indicator of environmental conditions suitable for growth than food quantity. These results suggest that the conditions of high suspended inorganic sediment concentrations in large turbid rivers represent a difficult growth environment for the zebra mussel.

3.
Oecologia ; 109(1): 154-165, 1996 Dec.
Article in English | MEDLINE | ID: mdl-28307606

ABSTRACT

The objective of this study was to determine if pond permanence and vertebrate predation (by fish and waterfowl) affect invertebrate community structure in the mudflat habitat of floodplain ponds. Invertebrate communities were studied for 1 year in four Mississippi River floodplain ponds with different hydroperiods. Pond 1 experienced five dry periods, pond 2 experienced four, pond 3 dried once, and standing water remained in pond 4 for the entire year. Vertebrate predator exclusion treatments (all access, no access, small-fish access and cage controls) were placed in all ponds. As pond duration increased, predatory invertebrate richness and abundance increased while overall invertebrate richness and abundance decreased. With the exception of the cladoceran Diaphanosoma, all commonly encountered taxa were strongly affected by pond permanence in terms of abundance, biomass and, generally, individual biomass. Taxa were nearly early divided between those that were more abundant in less permanent ponds and those that were more abundant in longer-duration ponds. Invertebrate taxa richness, abundance, and total biomass were lower in the all-access treatment than in the treatments that restricted predator access, and these effects were stronger in the more permanent ponds. In general, there were no significant differences in responses to the treatments with small-fish access and no access. These results support models that predict relatively weak effects of predation in frequently disturbed habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...