Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 48(5): 1143-52, 2012 Oct.
Article in English | MEDLINE | ID: mdl-27011274

ABSTRACT

The classical athecate dinoflagellate genera (Amphidinium, Gymnodinium, Gyrodinium) have long been recognized to be polyphyletic. Amphidinium sensu lato is the most diverse of all marine benthic dinoflagellate genera; however, following the redefinition of this genus ∼100 species remain now of uncertain or unknown generic affiliation. In an effort to improve our taxonomic and phylogenetic understanding of one of these species, namely Amphidinium semilunatum, we re-investigated organisms from several distant sites around the world using light and scanning electron microscopy and molecular phylogenetic methods. Our results enabled us to describe this species within a new heterotrophic genus, Ankistrodinium. Cells of A. semilunatum were strongly laterally flattened, rounded-quadrangular to oval in lateral view, and possessed a small asymmetrical epicone. The sulcus was wide and characteristically deeply incised on the hypocone running around the antapex and reaching the dorsal side. The straight acrobase with hook-shaped end started at the sulcal extension and continued onto the epicone. The molecular phylogenetic results clearly showed that A. semilunatum is a distinct taxon and is only distantly related to species within the genus Amphidinium sensu stricto. The nearest sister group to Ankistrodinium could not be reliably determined.

2.
Protist ; 159(3): 383-99, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18325833

ABSTRACT

The composition of the dinoflagellate genus Amphidinium is currently polyphyletic and includes several species in need of re-evaluation using modern morphological and phylogenetic methods. We investigated a broad range of uncultured morphotypes extracted from marine sediments in the Eastern Pacific Ocean that were similar in morphology to Amphidinium glabrum Hoppenrath and Okolodkov. To determine the number of distinct species associated with this phenotypic diversity, we collected LM, SEM, TEM and small subunit ribosomal DNA sequence information from different morphotypes, including the previously described A. glabrum. Both comparative morphological and molecular phylogenetic data supported the establishment of a new genus, Apicoporus n. gen., including at least two species, A. glaber n. comb., and A. parvidiaboli n. sp. Apicoporus is characterized by having amphiesmal pores and an apical pore covered by a hook-like protrusion; neither of these characters has been observed in other athecate dinoflagellates. The posterior end of Apicoporus parvidiaboli possessed varying degrees of "horn formation", ranging from slight to prominent. By contrast, the posterior end of Apicoporus glaber was distinctively rounded and lacked evidence of horn formation. Although these species were previously interpreted to be obligate heterotrophs, TEM and epifluorescence microscopy demonstrated that some cells of both species had unusually small but otherwise typical dinoflagellate plastids. The number and density of plastids in any particular cell varied significantly in the genus, but the plastids were almost always concentrated at the posterior end of the cells or around the nucleus. The presence of cryptic photosynthetic plastids in these benthic species suggests that photosynthesis might be much more widespread in dinoflagellates than is currently assumed.


Subject(s)
Dinoflagellida/cytology , Dinoflagellida/isolation & purification , Geologic Sediments/parasitology , Phylogeny , Seawater/parasitology , Animals , DNA, Protozoan/genetics , Dinoflagellida/classification , Dinoflagellida/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , RNA, Ribosomal/genetics , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...