Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 96(11): 117001, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16605851

ABSTRACT

Pressure studies of the thermodynamics of CeCoIn5 under magnetic fields H parallel to c and H parallel to ab have been made up to P = 1.34 GPa. We recorded the signature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state for all pressures when H parallel to ab. Also remarkably, the FFLO regime suddenly expands for P = 1.34 GPa. With the help of a microscopic theory for d-wave superconductivity, we have extracted the gyromagnetic ratio g and the Fermi velocities nu(a) and nu(c). Our study is the first evidence for the existence of the FFLO state away from the influence of the antiferromagnetic fluctuations. We find a close parallel between the T-P phase diagram of CeCoIn5 and the T-x phase diagram of the high-Tc cuprates, where x is the hole concentration.

2.
Phys Rev Lett ; 96(4): 047008, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16486879

ABSTRACT

In the archetypal strongly correlated electron superconductor CeCu2Si2 and its Ge-substituted alloys CeCu2(Si1-xGex)2 two quantum phase transitions--one magnetic and one of so far unknown origin-can be crossed as a function of pressure. We examine the associated anomalous normal state by detailed measurements of the low temperature resistivity (rho) power-law exponent alpha. At the lower critical point (at pcl, 1

3.
Phys Rev Lett ; 94(22): 226402, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-16090416

ABSTRACT

We report dc-magnetization measurements on YbRh2Si2 at temperatures down to 0.04 K, magnetic fields B< or =11.5 T, and under hydrostatic pressure P< or =1.3 GPa. At ambient pressure a kink at B* =9.9 T indicates a new type of field-induced transition from an itinerant to a localized 4f state. This transition is different from the metamagnetic transition observed in other heavy-fermion compounds, as here ferromagnetic rather than antiferromagnetic correlations dominate below B*. Hydrostatic pressure experiments reveal a clear correspondence of B* to the characteristic spin fluctuation temperature determined from specific heat.

4.
Science ; 302(5653): 2104-7, 2003 Dec 19.
Article in English | MEDLINE | ID: mdl-14684816

ABSTRACT

We report the presence of two disconnected superconducting domes in the pressure-temperature phase diagram of partially germanium-substituted CeCu2Si2. The lower density superconducting dome lies on the threshold of antiferromagnetic order, indicating magnetically mediated pairing, whereas the higher density superconducting regime straddles a weakly first-order volume collapse, suggesting a pairing interaction based on spatially extended density fluctuations. Two distinct pairing mechanisms thus appear to operate in the single, wide, superconducting range of stoichiometric CeCu2Si2, both of which might apply more generally to other classes of correlated electron systems.

5.
Phys Rev Lett ; 87(24): 247003, 2001 Dec 10.
Article in English | MEDLINE | ID: mdl-11736532

ABSTRACT

The clathrate compound Ba 6Ge25 and its relatives consist of a rigid germanium skeleton, into which barium or other metal atoms are coordinated. These guest atoms can "rattle" freely at high temperatures, but in Ba 6Ge25 some of them lock randomly into split positions below T(S) approximately 200 K. The resulting bad metal undergoes a BCS-like superconducting transition at T(c) approximately 0.24 K. T(c) increases more than 16-fold, as T(S) is suppressed by hydrostatic pressure p, but changes only slightly with p from T(c) approximately 0.84 K in the undistorted sister compound Ba 4Na2Ge25. The large enhancement of T(c) in Ba 6Ge25 may be attributed mainly to the pressure tuning of strong disorder caused by the random displacement of Ba atoms at T(S).

6.
Phys Rev Lett ; 85(3): 626-9, 2000 Jul 17.
Article in English | MEDLINE | ID: mdl-10991356

ABSTRACT

We report the first observation of non-Fermi-liquid (NFL) effects in a clean Yb compound at ambient pressure and zero magnetic field. The electrical resistivity and the specific-heat coefficient of high-quality single crystals of YbRh(2)Si(2) present a linear and a logarithmic temperature dependence, respectively, in more than a decade in temperature. We ascribe this NFL behavior to the presence of (presumably) quasi-2D antiferromagnetic spin fluctuations related to a very weak magnetic phase transition at T(N) approximately 65 mK. Application of hydrostatic pressure induces anomalies in the electrical resistivity, indicating the stabilization of magnetic order.

10.
Science ; 252(5014): 1829-31, 1991 Jun 28.
Article in English | MEDLINE | ID: mdl-17753258

ABSTRACT

The superconducting compound K(3)C(60) (with transition temperature T(c) = 19.3 kelvin at ambient pressure), formed as a single phase by reaction of alkali vapor with solids of the icosahedral C(60) molecule (buckminsterfullerene), shows a very large decrease of T(c) with increasing pressure. Susceptibility measurements on sintered pellets showing bulk superconductivity are reported up to 21 kilobars of pressure, where T(c) is already less than 8 kelvin. The results are consistent with a piling up of the density of states at the Fermi level.

SELECTION OF CITATIONS
SEARCH DETAIL
...