Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 188: 71-6, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26041166

ABSTRACT

Golden, Sunrise Solo and Tainung cultivars of papaya were found to release CS2 when submitted to experimental conditions of dithiocarbamate residue analysis. Three common analytical methods were used to quantitate CS2; one spectrophotometric method and two chromatographic methods. All three methods gave positive CS2 results for all three papaya varieties. Other endogenous compounds present in isooctane extracts of papaya fractions detected via gas chromatography (GC/ITD) using electron ionization (EI) were: carbonyl sulfide, dimethyl sulfide, carbon disulfide, 2-methylthiophene, 3-methylthiophene, 2-ethylthiophene, 3-ethylthiophene, benzylisothiocyanate, benzylthiocyanate and benzonitrile. Control samples were obtained from papaya plantations cultivated in experimental areas, in which no treatment with fungicides of the dithiocarbamate group was applied. Endogenous CS2 levels were compared with true dithiocarbamate residues measured in papaya samples from the field trials following applications of the mancozeb fungicide. Three days after application, true dithiocarbamate residues, measured by the procedure with isooctane partitioning and GC-ITD, were at the average level of 2 mg kg(-1).


Subject(s)
Carbon Disulfide/chemistry , Carica/chemistry , Chromatography, Gas/methods , Fungicides, Industrial/analysis
2.
Environ Sci Technol ; 35(10): 2084-8, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11393991

ABSTRACT

Flow injection analysis coupled with membrane introduction mass spectrometry (FIA-MIMS) with on-line derivatization is shown to allow fast, accurate, nearly interference-free, and sensitive (low microgram/L) quantitation of phenolic compounds in water. On-line FIA derivatization of the phenolic compounds is performed by acetic anhydride acetylation in a K2CO3-buffered alkaline medium. The phenol acetates so formed efficiently permeate a silicone membrane and are directly transferred to the mass spectrometer, in which they are analyzed with selectivity and high sensitivity via selected ion monitoring. FIA-MIMS analysis was performed for aqueous solutions of phenol, 2-methylphenol, 4-chlorophenol, 4-chloro-3-methylphenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, and detection limits in the 0.5-20 micrograms/L (ppb) range were observed for an analytical frequency of six samples/h. FIA-MIMS for phenolic compound analysis is considerably less time-consuming and labor intensive than most chromatographic methods based on liquid-liquid extraction and preconcentration procedures and is therefore applicable for on-line and in-situ monitoring of phenols in wastewaters and in the environment. FIA-MIMS employing acetic anhydride derivatization is also virtually free of interferences since it combines chemical, membrane, and enhanced MS selectivity; hence quantitation of phenolic compounds can be performed in the presence of congeners.


Subject(s)
Environmental Monitoring/methods , Mass Spectrometry/methods , Phenols/analysis , Water Pollutants, Chemical/analysis , Acetates/chemistry , Sensitivity and Specificity
3.
J Am Soc Mass Spectrom ; 12(1): 14-22, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11142356

ABSTRACT

Primary carboxonium (H2C=O+-R) and carbosulfonium (H2C=S+-R) ions (R = CH3, C2H5, Ph) and the prototype five-membered cyclic carboxonium ion are found to react in the gas phase with cyclic acetals and ketals by transacetalization to form the respective O-alkyl-1,3-dioxolanium and S-alkyl-1,3-oxathiolanium ions. The reaction, which competes mainly with proton transfer and hydride abstraction, initiates by O-alkylation and proceeds by ring opening and recyclization via intramolecular displacement of the carbonyl compound previously protected in its ketal form. As indicated by product ion mass spectra, and confirmed by competitive reactions, carbosulfonium ions are, by transacetalization, much more reactive than carboxonium ions. For acyclic secondary and tertiary carboxonium ions bearing acidic alpha-hydrogens, little or no transacetalization occurs and proton transfer dominates. This structurally related reactivity distinguishes primary from both secondary and tertiary ions, as exemplified for the two structural isomers H2C=O+-C2H5 and CH3C(H)=O+-CH3. The prototype five- and six-membered cyclic carboxonium ions react mainly by proton transfer and adduct formation, but the five-membered ring ion also reacts by transacetalization to a medium extent. Upon CID, the transacetalization products of the primary ions often dissociate by loss of formaldehyde, and a +44 u neutral gain/-30 u neutral loss MS3 scan is shown to efficiently detect reactive carboxonium and carbosulfonium ions. Transacetalization with either carboxonium or carbosulfonium ions provides a route to 1,3-oxathiolanes and analogs alkylated selectively either at the sulfur or oxygen atom.

4.
Anal Chem ; 72(9): 2166-70, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10815981

ABSTRACT

A new MIMS-derived technique, headspace membrane introduction mass spectrometry (HS-MIMS), is described for direct trace level analysis of volatile organic compounds (VOCs) in soil and other dry or wet solid matrixes. A silicone membrane interface is placed about 15 cm from the ion source, and a closed airspace (headspace) is created by connecting a toggle valve to the 1/4 in. tubing that connects the membrane interface to the ion source. For the VOC analysis, the headspace is evacuated and the solid sample vessel is heated to 90 degrees C. The VOCs are rapidly desorbed from the sample, pervaporated through the membrane, and preconcentrated for 4 min in the evacuated headspace. Then, the toggle valve is opened and the trapped VOCs are released into the ion source region of a quadrupole mass spectrometer. By electron ionization and selected-ion monitoring, a relatively sharp and intense peak is obtained and used for quantification. The HS-MIMS analysis shows excellent linearity and reproducibility and detection limits for many VOCs typically of 50-100 ng/kg (ppt).

5.
J Mass Spectrom ; 35(2): 189-98, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10679981

ABSTRACT

A novel gas-phase reaction of diacylium ions of the O=C=X(+)=C=O type (X = N, CH) is reported: double transacetalization with cyclic acetals or ketals. The reaction is exothermic and highly efficient, and forms members of a new class of highly charged-delocalized ions: cyclic ionic diketals. Pentaquadrupole double- and triple-stage mass spectrometric (MS(2) and MS(3)) experiments reveal the high double transacetalization reactivity of O=C=N(+)=C=O and O=C=CH(+)=C=O, whereas the synthesis of differently substituted cyclic ionic diketals is performed in MS(3) experiments via sequential mono- and double transacetalization of O=C=N(+)=C=O and O=C=CH(+)=C=O with different acetals. With cyclic acetals, the acylium-thioacylium ion O=C=N(+)=C=S reacts promptly and selectively by mono-transacetalization at its acylium site, but the free thiacylium site of its cyclic ionic ketal is nearly unreactive by double transacetalization. Therefore, only the acylium site of O=C=N(+)=C=S can be efficiently protected by transacetalization. Low-energy MS(3) collision-induced dissociation of the cyclic ionic diketals of O=C=N(+)=C=O and O=C=CH(+)=C=O sequentially frees each of the protected acylium site to form the mono-derivatized ion, and then the fully deprotected diacylium ion.


Subject(s)
Acetals/chemistry , Isocyanates/chemistry , Mass Spectrometry
6.
Chemistry ; 6(2): 321-6, 2000 Jan.
Article in English | MEDLINE | ID: mdl-11931112

ABSTRACT

Two ortho-hetarynium ions, the 2-pyridyl and 2-pyrimidyl cations, react promptly with 1,3-dienes in the gas phase by annulation, formally by fusion, onto the ions of a pyrrole ring. This novel reaction proceeds through an initial polar [4 + 2+] cycloaddition across the C[triple bond]N+ bond, followed by fast ring opening, a [1,4-H] shift, and finally a recyclization that results in a contraction of a six- to a five-membered ring and dissociation by the loss of a methyl radical. For the 2-pyridyl cation, this reaction yields ionized indolizines (pyrrolo[1,2-a]pyridines), while for the 2-pyrimidyl cation, it gives ionized pyrrolo[1,2-a]pyrimidines. The annulation reaction, performed in the rf-only collision quadrupole of a pentaquadrupole (QqQqQ) mass spectrometer, occurs readily with both 1,3-butadiene and isoprene, and is thermodynamically and kinetically favored as predicted by ab initio calculations. Ortho-hetarynium ions and 1,3-dienes provide, therefore, the two building blocks for the efficient one-step gas-phase synthesis of ionized bicyclic pyrrolo[1,2-a]pyridine (indolizine) and pyrrolo[1,2-a]pyrimidine, as well as their analogues and derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...