Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Mass Spectrom ; 47(11): 1526-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23147832

ABSTRACT

Gas-phase reactions of model carbosulfonium ions (CH(3)-S(+)=CH(2;) CH(3)CH(2)-S(+)=CH(2) and Ph-S(+)=CH(2)) and an O-analogue carboxonium ion (CH(3)-O(+)=CH(2)) with acyclic (isoprene, 1,3-butadiene, methyl vinyl ketone) and cyclic (1,3-cyclohexadiene, thiophene, furan) conjugated dienes were systematically investigated by pentaquadrupole mass spectrometry. As corroborated by B3LYP/6-311 G(d,p) calculations, the carbosulfonium ions first react at large extents with the dienes forming adducts via simple addition. The nascent adducts, depending on their stability and internal energy, react further via two competitive channels: (1) in reactions with acyclic dienes via cyclization that yields formally [4+2(+)] cycloadducts, or (2) in reactions with the cyclic dienes via dissociation by HSR loss that yields methylenation (net CH(+) transfer) products. In great contrast to its S-analogues, CH(3)-O(+)=CH(2) (as well as C(2)H(5)-O(+)=CH(2) and Ph-O(+)=CH(2) in reactions with isoprene) forms little or no adduct and proton transfer is the dominant reaction channel. Isomerization to more acidic protonated aldehydes in the course of reaction seems to be the most plausible cause of the contrasting reactivity of carboxonium ions. The CH(2)=CH-O(+)=CH(2) ion forms an abundant [4+2(+)] cycloadduct with isoprene, but similar to the behavior of such α,ß-unsaturated carboxonium ions in solution, seems to occur across the C=C bond.

2.
Analyst ; 136(18): 3753-7, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21776492

ABSTRACT

The association of solid phase extraction with molecularly imprinted polymers (MIP) and electrospray ionization mass spectrometry (ESI-MS) is applied to the direct extraction and quantitation of benzodiazepines in human plasma. The target analytes are sequestered by MIP and directly analyzed by ESI-MS. Due to the MIP highly selective extraction, ionic suppression during ESI is minimized; hence no separation is necessary prior to ESI-MS, which greatly increases analytical speed. Benzodiazepines (medazepam, nitrazepam, diazepam, chlordiazepoxide, clonazepam and midazolam) in human plasma were chosen as a proof-of-principle case of drug analyses by MIP-ESI-MS in a complex matrix. MIP-ESI-MS displayed good figures of merits for medazepam, nitrazepam, diazepam, chlordiazepoxide and midazolam, with analytical calibration curves ranging from 10 to 250 µg L(-1) (r > 0.98) with limit of quantification <10 µg L(-1) and acceptable within-day and between-day precision and accuracy.


Subject(s)
Benzodiazepines/blood , Blood Chemical Analysis/methods , Molecular Imprinting , Polymers/chemistry , Spectrometry, Mass, Electrospray Ionization , Benzodiazepines/isolation & purification , Humans , Solid Phase Extraction
3.
Anal Methods ; 3(3): 751-754, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-32938102

ABSTRACT

A few hydrocarbons in gasoline display relatively high solubility in water and may function therefore as its characteristic set of natural markers. These markers are detected from an aqueous gasoline extract via membrane introduction mass spectrometry (MIMS) producing characteristic chemical profiles. MIMS adds a second selectivity criterion detecting only the water soluble hydrocarbons that most easily permeate through a silicone membrane. MIMS screening and the use of artificial markers for gasoline with similar chemical properties (high water solubility and membrane permeability) as those of its natural markers is proposed. MIMS provides a reliable screening method for natural and artificial markers in gasoline for its typification and to monitor adulteration and origin.

4.
Rapid Commun Mass Spectrom ; 22(24): 4105-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19021132

ABSTRACT

Trap-and-release membrane introduction mass spectrometry (T&R-MIMS) with a removable direct insertion membrane probe (DIMP) is used to quantitate a variety of trace phenolic compounds in water after acetylation. The procedure is simple, rapid and robust, producing linear and reproducible responses for phenolic compounds with varying polarities. Acetylation minimizes the polarity effects of ring substituents; hence, T&R-MIMS of the acetylated phenols provides lower and more uniform limits of detection (LODs) (2-15 microg L(-1)) than those obtained by direct T&R-MIMS analysis of the non-derivatized phenols.


Subject(s)
Mass Spectrometry/methods , Phenols/analysis , Water Pollutants, Chemical/analysis , Water/chemistry , Acetylation , Phenols/chemistry , Water Pollutants, Chemical/chemistry
5.
Anal Chem ; 80(3): 898-903, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18179250

ABSTRACT

Using a cellulose dialysis membrane and aqueous solutions of common drugs as a proof-of-principle example, we demonstrate that solid but permeable and flexible membranes can be used as interfaces for the direct analysis of solution constituents via easy ambient sonic-spray ionization mass spectrometry. This new combination of MS techniques, herein termed EASI-MIMS, promotes droplet pick up of the analyte from the external surface of the membrane from where the analyte has selectively permeated for proper mass spectrometry characterization and quantitation. Possible application of EASI-MIMS such as the environmental analyses of effluents, on-line monitoring of fermentation and biotransformations and on-line pharmacokinetic blood analysis are discussed.


Subject(s)
Membranes, Artificial , Pharmaceutical Preparations/analysis , Solutions/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Biomarkers/analysis , Environmental Monitoring/methods , Permeability , Pharmaceutical Preparations/chemistry , Solutions/chemistry , Sonication , Spectrometry, Mass, Electrospray Ionization/instrumentation , Water/chemistry
7.
Rapid Commun Mass Spectrom ; 20(19): 2901-5, 2006.
Article in English | MEDLINE | ID: mdl-16941547

ABSTRACT

Sonic spray ionization is shown to create a supersonic cloud of charged droplets able to promote efficient desorption and ionization of drugs directly from the surfaces of commercial drug tablets at ambient conditions. Compared with desorption electrospray ionization (DESI), desorption sonic spray ionization (DeSSI) is advantageous since it uses neither heating nor high voltages at the spray capillary. DeSSI therefore provides a more friendly environment in which to perform ambient mass spectrometry (MS). DeSSI-MS is herein evaluated for the analysis of drug tablets, and found to be, in general, as sensitive as DESI-MS. The (high) voltage-free DeSSI method provides, however, cleaner mass spectra with less abundant solvent cluster ions and with enough abundant analyte signal for tandem mass spectrometry (MS/MS). These features may therefore facilitate the DeSSI-MS detection of low molar mass components or impurities, or both. The higher-velocity supersonic DeSSI spray also facilitates matrix penetration thus providing more homogenous sampling and longer lasting ion signals.

8.
J Org Chem ; 71(16): 6192-203, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16872205

ABSTRACT

Theoretical calculations and gas-phase mass spectrometric studies were performed for the reaction of the naked (NO2+) and monosolvated (CH3NO2.NO2+) nitronium ion with several monosubstituted aromatic compounds. From these studies, we propose a general model for regioselectivity based on the single-electron transfer (SET) mechanism and an alternative mechanistic scheme for electrophilic aromatic nitration. This scheme considers the SET and the polar (Ingold-Hughes) mechanisms as extremes in a continuum pathway, the occurrence and extents of both mechanisms being governed mainly by the ability, or lack of ability, of the aromatic compound to transfer an electron to NO2+.

9.
J Am Soc Mass Spectrom ; 17(7): 1014-1022, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16713292

ABSTRACT

By Yates, Bouma, and Radom's definition, distonic radical ions are those formally arising by ionization of diradicals or zwitterionic molecules (including ylides). These ions differ, therefore, from conventional radical ions by displaying the charge site and unpaired electron site (spin) localized mandatorily on separate atoms or group of atoms; that is, these sites are separated in all of their major resonance forms. Many conventional radical ions with a major resonance form in which charge and spin sites reside formally on the same atom or group of atoms display, however, high degree of discretionary (non-mandatory) charge-spin separation. By analogy with the metal/metalloid terminology, we propose that these distonic-like radical ions be classified as distonoid ions. Radical ions would, therefore, be divided into three sub-classes: conventional, distonic, and distonoid ions. B3LYP/6-311 + G(d,p) calculations for a proof-of-principle set of radical cations are used to demonstrate the existence of many types of distonoid ions with a high degree of discretionary charge-spin separation. Reliable calculations are indispensable for probing distonoid ions, since an ion that was expected to be distonoid (by the analysis of its resonance forms) is shown by the calculations to display a characteristic conventional-ion electronic distribution. Similarly to many distonic radical ions, and in sharp contrast to a conventional radical ion (ionized 1,4-dioxane), the gas-phase intrinsic bimolecular reactivity with selective neutrals of a representative distonoid ion, ionized 2-methylene 1,3-dioxolane, is found to include dual ion-radical type reactions.

11.
J Am Soc Mass Spectrom ; 16(10): 1602-7, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16087345

ABSTRACT

Gas-phase reactions of several acylium and thioacylium ions, that is H2C=N-C+=O, H2C=N-C+=S, O=C=N-C+=O, S=C=N-C+=O, H3C-C+=O, and (CH3)2N-C+=O, with both a model isocyanate and isothiocyanate, that is, C2H5-N=C=O and C2H5-N=C=S, were investigated using tandem-in-space pentaquadrupole mass spectrometry. In these reactions, the formation of mono- and double-addition products is observed concurrently with proton transfer products. The double-addition products are far more favored in reactions with ethyl isocyanate, whereas the reactions with ethyl isothiocyanate form, preferentially, either the mono-addition product or proton transfer products, or both. Retro-addition dominates the low-energy collision-induced dissociation of the mono- and double-addition products with reformation of the corresponding reactant ions. Ab initio calculations at Becke3LYP//6-311 + G(d,p) level indicate that cyclization is favored for the double-addition products and that products equivalent to those synthesized in solution, that is, of 3,4-dihydro-2,4-dioxo-2H-1,3,5-oxadiazinium ions and sulfur analogs, are formed.


Subject(s)
Acetals/chemistry , Algorithms , Gases/chemistry , Pyridazines/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Acetals/analysis , Gases/analysis , Ions , Isocyanates , Isothiocyanates , Phase Transition , Pyridazines/analysis
12.
J Mass Spectrom ; 38(10): 1075-80, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14595857

ABSTRACT

The intrinsic reactivity of eight gaseous, mass-selected 2-azabutadienyl cations toward polar [4(+) + 2] cycloaddition with ethyl vinyl ether has been investigated by pentaquadrupole mass spectrometric experiments. Cycloaddition occurs readily for all the ions and, with the only exception of those from the N-acyl 2-azabutadienyl cations (N-acyliminium ions), the cycloadducts are found to dissociate readily upon collision activation (CID) both by retro-Diels-Alder reaction and by a characteristic loss of an ethanol (46u) neutral molecule. Ethanol loss from the intact polar [4(+) + 2] cycloadduct functions therefore as a structurally diagnostic test: 72 u neutral gain followed by 46 u neutral loss, i.e., as a combined ion-molecule reaction plus CID 'signature' for N-H, N-alkyl and N-aryl 2-azabutadienyl cations. The two N-acyliminium ions tested are exceptional as they form intact cycloadducts with ethyl vinyl ether which dissociate exclusively by the retro-Diels-Alder pathway.

13.
J Mass Spectrom ; 38(3): 305-14, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12644992

ABSTRACT

A novel reaction of acylium and thioacylium ions, polar [4 + 2(+)] Diels-Alder cycloaddition with 1,3-dienes and O-heterodienes, has been systematically investigated in the gas phase (Eberlin MN, Cooks RG. J. Am. Chem. Soc. 1993; 115: 9226). This polar cycloaddition, yet without precedent in solution, likely forms cyclic 2,5-dihydropyrylium ions. Here we report the reactions of gaseous acylium ions [(CH(3))(2)N-C(+)=O, Ph-C(+)=O, (CH(3))(2)N-C(+)=S, CH(3)-C(+)=O, CH(3)CH(2)-C(+)=O, and CH(2)=CH-C(+)=O] with several 1-oxy-substituted 1,3-dienes of the general formula RO-CH=CH-C(R(1))=CH(2), which were performed to collect further evidence for cycloaddition. In reactions with 1-methoxy and 1-(trimethylsilyloxy)-1,3-butadiene, adducts are formed to a great extent, but upon collision activation they mainly undergo structurally unspecific retro-addition dissociation. In reactions with Danishefsky's diene (trans-1-methoxy-3-(trimethylsilyloxy)-1,3-butadiene), adducts are also formed to great extents, but retro-addition is no longer their major dissociation; the ions dissociate instead mainly to a common fragment, the methoxyacryl cation of m/z 85. This fragment ion is most likely formed with the intermediacy of the acyclic adduct, which isomerizes prior to dissociation by a trimethylsilyl cation shift. Theoretical calculations predict that meta cycloadducts bearing 1-methoxy and 1-trimethylsilyloxy substituents are unstable, undergoing barrierless ring opening induced by the charge-stabilizing effect of the 1-oxy substituents. In contrast, for the reactions with 1-acetoxy-1,3-butadiene, both the experimental results and theoretical calculations point to the formation of intrinsically stable cycloadducts, but the intact cycloadducts are either not observed or observed in low abundances. Both the isomeric ortho and meta cycloadducts are likely formed, but the nascent ions dissociate to great extents owing to excess internal energy. The ortho cycloadducts dissociate by ketene loss; the meta cycloadducts undergo intramolecular proton transfer to the acetoxy group followed by dissociation by acetic acid loss to yield aromatic pyrylium ions. Either or both of these dissociations, ketene and/or acetic acid loss, dominate over the otherwise favored retro-Diels-Alder alternative. The pyrylium ion products therefore constitute compelling evidence for polar [4 + 2(+)] cycloaddition since their formation can only be rationalized with the intermediacy of cyclic adducts.

SELECTION OF CITATIONS
SEARCH DETAIL
...