Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2764: 165-176, 2024.
Article in English | MEDLINE | ID: mdl-38393595

ABSTRACT

The macro-metastasis/organ parenchyma interface (MMPI) is gaining increasing significance due to its prognostic relevance for cancer (brain) metastasis. We have developed an organotypic 3D ex vivo co-culture model that mimics the MMPI and allows us to evaluate the histopathological growth pattern (HGP) and infiltration grade of the tumor cells into the neighboring brain tissue and to study the interactions of cancer and glial cells ex vivo. This system consists of a murine brain slice and a 3D tumor plug that can be co-cultured for several days. After slicing the brain of 5- to 8-day-old mice, a Matrigel plug containing fluorescent-labelled tumor cells is placed next to it, so that tumor cells in the 3D plug and glial cells in the brain slice can interact at the interface for up to 96 h. To facilitate the positioning of the co-culture and increase the reproducibility of the model, a brain spacer can be used. The HGP and infiltration of the tumor cells into the brain slice as well as the activation of the glial cells can be assessed by live and/or confocal microscopy after immunofluorescence staining of microglia and/or astrocytes. Alternatively, the co-culture can also be used for other purposes, such as RNA analysis. This organotypic 3D ex vivo co-culture offers a perfect tool for preliminary screenings before in vivo experiments and reduces the number of animals, thus contributing to the 3R concept as a central precept in preclinical research.


Subject(s)
Brain Neoplasms , Neuroglia , Mice , Animals , Coculture Techniques , Reproducibility of Results , Neuroglia/pathology , Brain Neoplasms/pathology , Brain/pathology , Organ Culture Techniques
2.
Cancers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291825

ABSTRACT

(1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots-regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy.

3.
Int J Cancer ; 146(11): 3170-3183, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31626715

ABSTRACT

More than half of all brain metastases show infiltrating rather than displacing growth at the macro-metastasis/organ parenchyma interface (MMPI), a finding associated with shorter survival. The lymphoid enhancer-binding factor-1 (LEF1) is an epithelial-mesenchymal transition (EMT) transcription factor that is commonly overexpressed in brain-colonizing cancer cells. Here, we overexpressed LEF1 in an in vivo breast cancer brain colonization model. It shortened survival, albeit without engaging EMT at the MMPI. By differential proteome analysis, we identified a novel function of LEF1 as a regulator of the glutathione (GSH) system, the principal cellular redox buffer. LEF1 overexpression also conferred resistance against therapeutic GSH depletion during brain colonization and improved management of intracellular ROS. We conclude that besides EMT, LEF1 facilitates metastasis by improving the antioxidative capacity of epithelial breast cancer cells, in particular during colonization of the brain parenchyma.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Glutathione/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Reactive Oxygen Species/metabolism , Brain/pathology , Cell Line, Tumor , Cell Movement/physiology , Epithelial-Mesenchymal Transition/physiology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Parenchymal Tissue/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...