Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Toxics ; 12(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276729

ABSTRACT

Embryonic zebrafish represent a useful test system to screen substances for their ability to perturb development. The exposure scenarios, endpoints captured, and data analysis vary among the laboratories who conduct screening. A lack of harmonization impedes the comparison of the substance potency and toxicity outcomes across laboratories and may hinder the broader adoption of this model for regulatory use. The Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative was developed to investigate the sources of variability in toxicity testing. This initiative involved an interlaboratory study to determine whether experimental parameters altered the developmental toxicity of a set of 42 substances (3 tested in duplicate) in three diverse laboratories. An initial dose-range-finding study using in-house protocols was followed by a definitive study using four experimental conditions: chorion-on and chorion-off using both static and static renewal exposures. We observed reasonable agreement across the three laboratories as 33 of 42 test substances (78.6%) had the same activity call. However, the differences in potency seen using variable in-house protocols emphasizes the importance of harmonization of the exposure variables under evaluation in the second phase of this study. The outcome of the Def will facilitate future practical discussions on harmonization within the zebrafish research community.

2.
Inhal Toxicol ; 35(7-8): 214-229, 2023.
Article in English | MEDLINE | ID: mdl-37339372

ABSTRACT

BACKGROUND: Exposure to asbestos is associated with malignant and nonmalignant respiratory disease. To strengthen the scientific basis for risk assessment on fibers, the National Institute of Environmental Health Sciences (NIEHS) has initiated a series of studies to address fundamental questions on the toxicology of naturally occurring asbestos and related mineral fibers after inhalation exposure. A prototype nose-only exposure system was previously developed and validated. The prototype system was expanded to a large-scale exposure system in this study for conducting subsequent in vivo rodent inhalation studies of Libby amphibole (LA) 2007, selected as a model fiber. RESULTS: The exposure system consisting of six exposure carousels was able to independently deliver stable LA 2007 aerosol to individual carousels at target concentrations of 0 (control group), 0.1, 0.3, 1, 3, or 10 mg/m3. A single aerosol generator was used to provide aerosol to all carousels to ensure that exposure atmospheres were chemically and physically similar, with aerosol concentration as the only major variable among the carousels. Transmission electron microscopy (TEM) coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis of aerosol samples collected at the exposure ports indicated the fiber dimensions, chemical composition, and mineralogy were equivalent across exposure carousels and were comparable to the bulk LA 2007 material. CONCLUSION: The exposure system developed is ready for use in conducting nose-only inhalation toxicity studies of LA 2007 in rats. The exposure system is anticipated to have applicability for the inhalation toxicity evaluation of other natural mineral fibers of concern.


Subject(s)
Asbestos, Amphibole , Asbestos , Rats , Animals , Asbestos, Amphibole/toxicity , Mineral Fibers , Aerosols , Inhalation Exposure/adverse effects
3.
Inhal Toxicol ; 35(7-8): 201-213, 2023.
Article in English | MEDLINE | ID: mdl-37339371

ABSTRACT

BACKGROUND: Asbestos has been classified as a human carcinogen, and exposure may increase the risk of diseases associated with impaired respiratory function. As the range of health effects and airborne concentrations that result in health effects across asbestos-related natural mineral fiber types are not fully understood, the National Institute of Environmental Health Sciences has established a series of research studies to characterize hazards of natural mineral fibers after inhalation exposure. This paper presents the method development work of this research project. RESULTS: A prototype nose-only exposure system was fabricated to explore the feasibility of generating natural mineral fiber aerosol for in vivo inhalation toxicity studies. The prototype system consisted of a slide bar aerosol generator, a distribution/delivery system and an exposure carousel. Characterization tests conducted using Libby Amphibole 2007 (LA 2007) demonstrated the prototype system delivered stable and controllable aerosol concentration to the exposure carousel. Transmission electron microscopy (TEM) analysis of aerosol samples collected at the exposure port showed the average fiber length and width were comparable to the bulk LA 2007. TEM coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis further confirmed fibers from the aerosol samples were consistent with the bulk LA 2007 chemically and physically. CONCLUSIONS: Characterization of the prototype system demonstrated feasibility of generating LA 2007 fiber aerosols appropriate for in vivo inhalation toxicity studies. The methods developed in this study are suitable to apply to a multiple-carousel exposure system for a rat inhalation toxicity testing using LA 2007.


Subject(s)
Asbestos, Amphibole , Asbestos , Humans , Rats , Animals , Asbestos, Amphibole/toxicity , Mineral Fibers , Asbestos/analysis , Carcinogens/toxicity , Aerosols
4.
Toxicol Rep ; 10: 621-632, 2023.
Article in English | MEDLINE | ID: mdl-37250531

ABSTRACT

Thallium is a heavy metal that is known to induce a broad spectrum of adverse health effects in humans including alopecia, neurotoxicity, and mortality following high dose acute poisoning events. Widespread human exposure to thallium may occur via consumption of contaminated drinking water; limited toxicity data are available to evaluate the corresponding public health risk. To address this data gap, the Division of Translational Toxicology conducted short-term toxicity studies of a monovalent thallium salt, thallium (I) sulfate. Thallium (I) sulfate was administered via dosed drinking water to time-mated Sprague Dawley (Hsd:Sprague Dawley® SD®) rats (F0 dams) and their offspring (F1) from gestation day (GD) 6 until up to postnatal day (PND) 28 at concentrations of 0, 3.13, 6.25, 12.5, 25, or 50 mg/L, and adult male and female B6C3F1/N mice for up to 2 weeks at concentrations of 0, 6.25, 12.5, 25, 50, or 100 mg/L. Rat dams in the 50 mg/L exposure group were removed during gestation, and dams and offspring in the 25 mg/L exposure group were removed on or before PND 0 due to overt toxicity. Exposure to thallium (I) sulfate at concentrations ≤ 12.5 mg/L did not impact F0 dam body weights, maintenance of pregnancy, littering parameters, or F1 survival (PND 4-28). However, in F1 pups, exposure to 12.5 mg/L thallium (I) sulfate resulted in decreased body weight gains relative to control rats and onset of whole-body alopecia. Measurement of thallium concentrations in dam plasma, amniotic fluid, fetuses (GD 18), and pup plasma (PND 4) indicated marked maternal transfer of thallium to offspring during gestation and lactation. Mice exposed to 100 mg/L thallium (I) sulfate were removed early due to overt toxicity, and mice exposed to ≥ 25 mg/L exhibited exposure concentration-related decreases in body weight. Lowest-observed-effect levels of 12.5 mg/L (rats) and 25 mg/L (mice) were determined based on the increased incidence of clinical signs of alopecia in F1 rat pups and significantly decreased body weights for both rats and mice.

6.
Toxicol Sci ; 191(2): 374-386, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36562586

ABSTRACT

Two organophosphate esters used as flame retardants and plasticizers, triphenyl phosphate (TPHP) and isopropylated phenyl phosphate (IPP), have been detected in environmental samples around the world. Human exposure primarily occurs via oral ingestion with reported higher concentrations in children. Currently, there are no data to evaluate potential risk from exposure to either TPHP or IPP during fetal development. These short-term perinatal studies in rats provide preliminary toxicity data for TPHP and IPP, including information on transfer to fetus/offspring and across the pup blood-brain barrier. In separate experiments, TPHP or IPP were administered via dosed feed at concentrations 0, 1000, 3000, 10 000, 15 000, or 30 000 ppm to time-mated Hsd:Sprague Dawley SD rats from gestation day (GD) 6 through postnatal day (PND) 28; offspring were provided dosed feed at the same concentration as their dam (PND 28-PND 56). TPHP- and IPP-related toxicity resulted in removal of both 30 000 ppm groups on GD 12 and 15 000 ppm IPP group after parturition. Body weight and organ weights were impacted with exposure in remaining dams. Reproductive performance was perturbed at ≥10 000 ppm TPHP and all IPP exposure groups. In offspring, both TPHP- and IPP-related toxicity was noted in pups at ≥10 000 ppm as well as reduction in bodyweights, delays in pubertal endpoints, and/or reduced cholinesterase enzyme activity starting at 1000 ppm TPHP or IPP. Preliminary internal dose assessment indicated gestational and lactational transfer following exposure to TPHP or IPP. These findings demonstrate that offspring development is sensitive to 1000 ppm TPHP or IPP exposure.


Subject(s)
Flame Retardants , Pregnancy , Female , Child , Rats , Animals , Humans , Rats, Sprague-Dawley , Flame Retardants/toxicity , Plasticizers/toxicity , Organophosphates/toxicity , Phosphates , Esters/toxicity
7.
Toxicol Lett ; 360: 53-61, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35331842

ABSTRACT

Vanadium is a ubiquitous environmental contaminant although there are limited data to assess potential adverse human health impact following oral exposure. In support of studies investigating the subchronic toxicity of vanadyl sulfate (V4+) and sodium metavanadate (V5+) following perinatal exposure via drinking water in male and female rats, we have determined the internal exposure and urinary excretion of total vanadium at the end of study. Water consumption decreased with increasing exposure concentration following exposure to both compounds. Plasma and urine vanadium concentration normalized to total vanadium consumed per day increased with the exposure concentration of vanadyl sulfate and sodium metavanadate suggesting absorption increased as the exposure concentration increased. Additionally, females had higher concentrations than males (in plasma only for vanadyl sulfate exposure). Animals exposed to sodium metavanadate had up to 3-fold higher vanadium concentration in plasma and urine compared to vanadyl sulfate exposed animals, when normalized to total vanadium consumed per day, demonstrating differential absorption, distribution, metabolism, and excretion properties between V5+ and V4+ compounds. These data will aid in the interpretation of animal toxicity data of V4+ and V5+ compounds and determine the relevance of animal toxicity findings to human exposures.


Subject(s)
Drinking Water , Vanadium , Animals , Female , Male , Rats , Sodium , Vanadates/toxicity , Vanadium/toxicity , Vanadium/urine , Vanadium Compounds
8.
Inhal Toxicol ; 33(9-14): 334-346, 2021.
Article in English | MEDLINE | ID: mdl-34890527

ABSTRACT

OBJECTIVE: Ethyltoluenes are isolated during crude oil refinement for use in gasoline and commercial products and are ubiquitous in the environment. However, minimal toxicity data are available. Previously, we identified 2-ethyltoluene (2-ET) as the most potent isomer via nose-only inhalation exposure in rodents. Here, we expanded the hazard characterization of 2-ET in two rodent models using whole-body inhalation exposure and evaluated the role of prenatal exposure. METHODS: Time-mated Hsd:Sprague Dawley® SD® rats were exposed to 0, 150, 300, 600, 900, or 1200 ppm 2-ET via inhalation starting on gestation day 6 until parturition. Rat offspring (n = 8/exposure/sex) were exposed to the same concentrations as the respective dams for 2 weeks after weaning. Adult male and female B6C3F1/N mice (n = 5/exposure/sex) were exposed to the same concentrations for 2 weeks. RESULTS AND DISCUSSION: Exposure to ≥600 ppm 2-ET produced acute toxicity in rats and mice characterized by large decreases in survival, body weight, adverse clinical observations, and diffuse nasal olfactory epithelium degeneration (rats) or necrosis (mice). Due to the early removal of groups ≥600 ppm, most endpoint evaluations focused on lower exposure groups. In 150 and 300 ppm exposure groups, reproductive performance and littering were not significantly changed and body weights in exposed rats and mice were 9-18% lower than controls. Atrophy of the olfactory epithelium and nerves was observed in all animals exposed to 150 and 300 ppm. These lesions were more severe in mice than in rats. CONCLUSION: Nasal lesions were observed in all animals after whole-body exposure up to 600 ppm 2-ET for 2 weeks. Future studies should focus on 2-ET metabolism and distribution to better understand species differences and refine hazard characterization of this understudied environmental contaminant.


Subject(s)
Inhalation Exposure , Administration, Inhalation , Animals , Female , Inhalation Exposure/adverse effects , Male , Mice , Mice, Inbred Strains , Pregnancy , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
9.
J Immunotoxicol ; 18(1): 1-12, 2021 12.
Article in English | MEDLINE | ID: mdl-34357831

ABSTRACT

Sulfolane is a solvent used in the petrochemical industry and a groundwater contaminant in areas near refineries. The current studies were conducted to assess the impact of oral exposure to sulfolane on the immune system using two models: (1) a perinatal drinking water exposure to 0, 30, 100, 300, or 1000 mg/L from gestation day (GD) 6 until ∼13 weeks-of-age in Harlan Sprague Dawley rats; and, (2) a 90-day gavage exposure of adult female B6C3F1/N mice to 0, 1, 10, 30, 100, or 300 mg/kg/day. Immune parameters evaluated included measurement of antibody production against sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), ex vivo measurements of natural killer (NK) cell activity, cytotoxic T-cell (CTL) activity, and T-cell proliferation, as well as measures of splenic immune cell populations, hematological parameters, and histopathology of immune tissues. A decrease in ex vivo NK cell activity was observed in cells from female - but not male - F1 rats following developmental exposure. In adult female mice, splenic NK cell number was lower than the vehicle controls at doses ≥ 100 mg/kg; however, ex vivo NK cell activity was not affected by sulfolane treatment. In female mice, a decrease in the number of large unstained cells at doses ≥ 30 mg/kg was observed. In F1 rats, effects on white blood cells (WBC) were limited to a decreasing trend in leukocytes in females; no effects were observed in males. Under the conditions of this study, a no-observed-effect level (NOEL) of 3 mg/kg/day was identified based on reduced NK cell activity in female F1 rats. Overall, these findings suggest that oral exposure to sulfolane in rodents had minimal effects on the immune system.


Subject(s)
Spleen , Thiophenes , Animals , Female , Male , Mice , Mice, Inbred Strains , Pregnancy , Rats , Rats, Sprague-Dawley , Sheep
10.
Toxicol Appl Pharmacol ; 418: 115496, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33744279

ABSTRACT

The toxicokinetic behavior of α-pinene and its potential reactive metabolite, α-pinene oxide, was investigated following whole body inhalation exposure to 50 and 100 ppm α-pinene in rats and mice for 6 h per day for 7d. In both species and sexes, the maximum blood concentration (Cmax) increased more than proportionally while the increase in area under the concentration time curve (AUC) was proportional to the exposure concentration. When normalized to the calculated dose (D), both Cmax/D (male rats, 12.2-54.5; female rats, 17.4-74.1; male mice, 7.41-14.2; female mice, 6.59-13.0 (ng/mL)/(mg/kg)) and AUC/D (male rats, 28.9-31.1; female rats, 55.8-56.8; male mice, 18.1-19.4; female mice, 19.2-22.5 (h*ng/mL)/(mg/kg)) in rats were higher than in mice and in female rats were higher than in male rats; no sex difference was observed in mice. α-Pinene was eliminated from blood with half-lives between 12.2 and 17.4 h in rats and 6.18-19.4 h in mice. At the low dose, the ratio of α-pinene oxide to α-pinene, based on Cmax and AUC, respectively, was 0.200-0.237 and 0.279-0.615 in rats and 0.060-0.086 and 0.036-0.011 in mice demonstrating lower formation of the oxide in mice than in rats. At the high dose, the ratio decreased considerably in both species pointing to saturation of pathways leading to the formation of α-pinene oxide. α-Pinene and the oxide were quantified in the mammary glands of rats and mice with tissue to blood ratios of ≥23 demonstrating retention of these analytes in mammary glands. The findings of epoxide formation and species- and sex-differences in systemic exposure may be important in providing context and relating animal findings to human exposures.


Subject(s)
Air Pollutants/pharmacokinetics , Air Pollution, Indoor , Bicyclic Monoterpenes/pharmacokinetics , Activation, Metabolic , Air Pollutants/toxicity , Animals , Bicyclic Monoterpenes/toxicity , Female , Inhalation Exposure , Male , Mammary Glands, Animal/metabolism , Mice , Rats, Sprague-Dawley , Risk Assessment , Sex Factors , Species Specificity , Tissue Distribution
11.
Data Brief ; 32: 106136, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32904430

ABSTRACT

Large-scale gene expression analysis of legacy* and emerging** brominated flame retardants were conducted in the male Harlan Sprague Dawley rat [1]. Each animal was dosed for 5 days with the chemical at concentrations of 0.1 - 1000 µmol/kg body weight per day. Following the last dose, a specimen of the left liver was removed for RNA extraction. The amplified RNA (aRNA) was fragmented and then hybridized to Affymetrix Rat Genome 230 2.0 Arrays. Each GeneChip® array was scanned using an Affymetrix GeneChip® Scanner 3000 7 G to generate raw expression level data (.CEL files). Statistical contrasts were used to find pairwise gene expression differences between the control group and each dose group using the R/maanova package [2]. The transcriptomic data can be used to provide insights into the degree of toxicity, toxic mechanisms, disease pathways activated by exposure, and for benchmark dose analysis. The gene expression data for each of the nine flame retardants discussed here accompanies the research article entitled, "Comparative Toxicity and Liver Transcriptomics of Legacy and Emerging Brominated Flame Retardants following 5-Day Exposure in the Rat" [1]. * polybrominated diphenyl ether 47 (PBDE 47), decabromodiphenyl ether (decaBDE), hexabromocyclododecane (HBCD); ** 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB); bis(2-ethylhexyl) tetrabromophthalate (TBPH); tetrabromobisphenol A-bis(2,3-dibromopropyl ether (TBBPA-DBPE); 1,2-bis(tribromophenoxy)ethane (BTBPE); decabromodiphenylethane (DBDPE); hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO).

12.
Toxicol Lett ; 332: 222-234, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32679240

ABSTRACT

The relative toxicity of three legacy and six emerging brominated flame retardants* was studied in the male Harlan Sprague Dawley rat. The hepatocellular and thyroid toxicity of each flame retardant was evaluated following five-day exposure to each of the nine flame retardants (oral gavage in corn oil) at 0.1-1000 µmol/kg body weight per day. Histopathology and transcriptomic analysis were performed on the left liver lobe. Centrilobular hypertrophy of hepatocytes and increases in liver weight were seen following exposure to two legacy (PBDE-47, HBCD) and to one emerging flame retardant (HCDBCO). Total thyroxine (TT4) concentrations were reduced to the greatest extent after PBDE-47 exposure. The PBDE-47, decaBDE, and HBCD liver transcriptomes were characterized by upregulation of liver disease-related and/or metabolic transcripts. Fewer liver disease or metabolic transcript changes were detected for the other flame retardants studied (TBB, TBPH, TBBPA-DBPE, BTBPE, DBDPE, or HCDBCO). PBDE-47 exhibited the most disruption of hepatocellular toxic endpoints, with the Nrf2 antioxidant pathway transcripts upregulated to the greatest extent, although some activation of this pathway also occurred after decaBDE, HBCD, TBB, and HCBCO exposure. These studies provide information that can be used for prioritizing the need for more in-depth brominated flame retardant toxicity studies.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Flame Retardants/toxicity , Hydrocarbons, Brominated/toxicity , Liver/metabolism , Transcriptome/drug effects , Animals , Cell Size/drug effects , Environmental Monitoring , Hepatocytes/drug effects , Liver/drug effects , Liver/pathology , Male , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thyroid Diseases/chemically induced , Thyroid Diseases/pathology , Thyroxine/metabolism , Toxicogenetics
13.
Toxicol Sci ; 176(2): 343-354, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32492150

ABSTRACT

A 5-day in vivo rat model was evaluated as an approach to estimate chemical exposures that may pose minimal risk by comparing benchmark dose (BMD) values for transcriptional changes in the liver and kidney to BMD values for toxicological endpoints from traditional toxicity studies. Eighteen chemicals, most having been tested by the National Toxicology Program in 2-year bioassays, were evaluated. Some of these chemicals are potent hepatotoxicants (eg, DE71, PFOA, and furan) in rodents, some exhibit toxicity but have minimal hepatic effects (eg, acrylamide and α,ß-thujone), and some exhibit little overt toxicity (eg, ginseng and milk thistle extract) based on traditional toxicological evaluations. Male Sprague Dawley rats were exposed once daily for 5 consecutive days by oral gavage to 8-10 dose levels for each chemical. Liver and kidney were collected 24 h after the final exposure and total RNA was assayed using high-throughput transcriptomics (HTT) with the rat S1500+ platform. HTT data were analyzed using BMD Express 2 to determine transcriptional gene set BMD values. BMDS was used to determine BMD values for histopathological effects from chronic or subchronic toxicity studies. For many of the chemicals, the lowest transcriptional BMDs from the 5-day assays were within a factor of 5 of the lowest histopathological BMDs from the toxicity studies. These data suggest that using HTT in a 5-day in vivo rat model provides reasonable estimates of BMD values for traditional apical endpoints. This approach may be useful to prioritize chemicals for further testing while providing actionable data in a timely and cost-effective manner.


Subject(s)
Kidney/drug effects , Liver/drug effects , Toxicity Tests/standards , Transcriptome , Animals , High-Throughput Screening Assays , Male , Rats , Rats, Sprague-Dawley
14.
Regul Toxicol Pharmacol ; 109: 104483, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31580887

ABSTRACT

JD5037 is a novel peripherally restricted CB1 receptor (CB1R) inverse agonist being developed for the treatment of visceral obesity and its metabolic complications, including nonalcoholic fatty liver disease and dyslipidemia. JD5037 was administered by oral gavage at 10, 40, and 150 mg/kg/day dose levels for up to 34 days to Sprague Dawley rats, and at 5, 20, and 75 mg/kg/day dose levels for 28 consecutive days to Beagle dogs. In rats, higher incidences of stereotypic behaviors were observed in 10 mg/kg females and 40 mg/kg males, and slower responses for reflex and sensory tests were observed only in males at 10 and 40 mg/kg during neurobehavioral testing. Sporadic minimal incidences of decreased activity (males) and seizures (both sexes) were observed in rats during daily clinical observations, without any clear dose-relationship. Male dogs at 75 mg/kg during treatment period, but not recovery period, had an increased incidence of gut associated lymphoid tissue hyperplasia and inflammation in the intestine. In both species, highest dose resulted in lower AUCs indicative of non-linear kinetics. Free access to food increased the plasma AUC∞ by ~4.5-fold at 20 mg/kg in dogs, suggesting presence of food may help in systemic absorption of JD5037 in dogs. Based on the study results, 150 mg/kg/day in rats, and 20 and 75 mg/kg/day doses in male and female dogs, respectively, were determined to be the no-observed-adverse-effect-levels (NOAELs).


Subject(s)
Drugs, Investigational/toxicity , Pyrazoles/toxicity , Receptor, Cannabinoid, CB1/agonists , Seizures/chemically induced , Stereotyped Behavior/drug effects , Sulfonamides/toxicity , Animals , Area Under Curve , Behavior, Animal/drug effects , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drugs, Investigational/therapeutic use , Female , Humans , Investigational New Drug Application , Male , No-Observed-Adverse-Effect Level , Non-alcoholic Fatty Liver Disease/drug therapy , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Sex Factors , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
15.
Inhal Toxicol ; 31(5): 192-202, 2019 04.
Article in English | MEDLINE | ID: mdl-31345048

ABSTRACT

Background: Increasing evidence from rodent studies indicates that inhaled multi-walled carbon nanotubes (MWCNTs) have harmful effects on the lungs. In this study, we examined the effects of inhalation exposure to MWCNTs on allergen-induced airway inflammation and fibrosis. We hypothesized that inhalation pre-exposure to MWCNTs would render mice susceptible to developing allergic lung disease induced by house dust mite (HDM) allergen. Methods: Male B6C3F1/N mice were exposed by whole-body inhalation for 6 h a day, 5 d a week, for 30 d to air control or 0.06, 0.2, and 0.6 mg/m3 of MWCNTs. The exposure atmospheres were agglomerates (1.4-1.8 µm) composed of MWCNTs (average diameter 16 nm; average length 2.4 µm; 0.52% Ni). Mice then received 25 µg of HDM extract by intranasal instillation 6 times over 3 weeks. Necropsy was performed at 3 and 30 d after the final HDM dose to collect serum, bronchoalveolar lavage fluid (BALF), and lung tissue for histopathology. Results: MWCNT exposure at the highest dose inhibited HDM-induced serum IgE levels, IL-13 protein levels in BALF, and airway mucus production. However, perivascular and peribronchiolar inflammatory lesions were observed in the lungs of mice at 3 d with MWCNT and HDM, but not MWCNT or HDM alone. Moreover, combined HDM and MWCNT exposure increased airway fibrosis in the lungs of mice. Conclusions: Inhalation pre-exposure to MWCNTs inhibited HDM-induced TH2 immune responses, yet this combined exposure resulted in vascular inflammation and airway fibrosis, indicating that MWCNT pre-exposure alters the immune response to allergens.


Subject(s)
Antigens, Dermatophagoides/immunology , Hypersensitivity/physiopathology , Inhalation Exposure/adverse effects , Lung/physiology , Nanotubes, Carbon/toxicity , Animals , Bronchoalveolar Lavage Fluid , Dose-Response Relationship, Immunologic , Fibrosis , Immunoglobulin E/blood , Interleukin-13/analysis , Male , Mice , Th2 Cells/immunology
16.
Food Chem Toxicol ; 49(11): 2820-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21871523

ABSTRACT

Kava Kava is an herbal supplement used as an alternative to antianxiety drugs. Although some reports suggest an association of Kava Kava with hepatotoxicity , it continues to be used in the United States due to lack of toxicity characterization. In these studies F344/N rats and B6C3F1 mice were administered Kava Kava extract orally by gavage in corn oil for two weeks, thirteen weeks or two years. Results from prechronic studies administered Kava Kava at 0.125 to 2g/kg body weight revealed dose-related increases in liver weights and incidences of hepatocellular hypertrophy. In the chronic studies, there were dose-related increases in the incidences of hepatocellular hypertrophy in rats and mice administered Kava Kava for up to 1g/kg body weight. This was accompanied by significant increases in incidences of centrilobular fatty change. There was no treatment- related increase in carcinogenic activity in the livers of male or female rats in the chronic studies. Male mice showed a significant dose-related increase in the incidence of hepatoblastomas. In female mice, there was a significant increase in the combined incidence of hepatocellular adenoma and carcinoma in the low and mid dose groups but not in the high dose group. These findings were accompanied by several nonneoplastic hepatic lesions.


Subject(s)
Chemical and Drug Induced Liver Injury , Kava/toxicity , Animals , Carcinogenicity Tests , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Liver/pathology , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred F344 , Sex Characteristics
17.
Int J Toxicol ; 25(1): 57-64, 2006.
Article in English | MEDLINE | ID: mdl-16510358

ABSTRACT

Tumorigenic mechanisms due to chemical exposure are broadly classified as either genotoxic or nongenotoxic. Genotoxic mechanisms are generally well defined; however nongenotoxic modes of tumorgenesis are less straightforward. This study was undertaken to help elucidate dose-response changes in gene expression (transcriptome) in the liver of rats in response to administration of known genotoxic or nongenotoxic liver carcinogens. Male Big Blue Fischer 344 rats were treated for 28-days with 0, 0.1, 0.3, 1.0, or 3.0 mg/kg/day of the genotoxin 2-acetylaminofluorene (AAF) or 0, 10, 30, 60, or 100 mg/kg/day of the nongenotoxin phenobarbital (PB). Transcriptome analysis was performed using the relatively focused Clontech Rat Toxicology II microarray (465 genes) and hybridized with 32P-labeled cDNA target. The analysis indicated that after 28 days of treatment, AAF altered the expression of 14 genes (9 up- and 5 down-regulated) and PB altered the expression of 18 genes (10 up- and 8 down-regulated). Of the limited genes whose expression was altered by AAF and PB, four were altered in common, two up-regulated, and two down-regulated. Several of the genes that show modulation of transcriptional activity following AAF and PB treatment display an atypical dose-response relationship such that the expression at the higher doses tended to be similar to that of control. This high-dose effect could potentially be caused by adaptation, toxicity, or tissue remodeling. These results suggest that the transcriptional response of the cells to higher doses of a toxic agent is likely to be different from that of a low-dose exposure.


Subject(s)
2-Acetylaminofluorene/toxicity , Carcinogens/toxicity , Epigenesis, Genetic/drug effects , Phenobarbital/toxicity , Transcription, Genetic/drug effects , Animals , Dose-Response Relationship, Drug , Glucuronosyltransferase/metabolism , Glutathione Transferase/metabolism , Liver/drug effects , Liver/enzymology , Liver/pathology , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , Rats , Rats, Inbred F344
18.
Article in English | MEDLINE | ID: mdl-15358305

ABSTRACT

An LC-MS/MS method was developed to quantitate the potential antitumor agent halofuginone in plasma. The assay uses 0.2 ml of plasma; chlorohalofuginone internal standard; acetonitrile for protein precipitation; a Phenomenex SYNERGI 4 micro Polar RP 80A (4 microm, 100 mm x 2 mm) column; an isocratic mobile phase of methanol:water:formic acid (80:20:0.02, v/v/v); and positive-ion electrospray ionization with selective reaction monitoring detection. Halofuginone eluted at approximately 2.4 min, internal standard eluted at approximately 2.9 min, and no endogenous materials interfered with their measurement. The assay was accurate, precise, and linear between 0.1 and 100 ng/ml. Halofuginone could be quantitated in dog plasma for at least 24 h after an i.v. dose of 0.1mg/kg. The assay is being used in ongoing pharmacokinetic studies of halofuginone.


Subject(s)
Coccidiostats/blood , Quinazolines/blood , Animals , Chromatography, Liquid , Coccidiostats/pharmacokinetics , Dogs , Indicators and Reagents , Mass Spectrometry , Molecular Weight , Piperidines , Quinazolines/pharmacokinetics , Quinazolinones , Reference Standards , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization
19.
Mutagenesis ; 19(3): 195-201, 2004 May.
Article in English | MEDLINE | ID: mdl-15123784

ABSTRACT

Treatment of cells with genotoxic chemicals is expected to set into motion a series of events including gene expression changes to cope with the damage. We have investigated gene expression changes in L5178Y TK(+/-) mouse lymphoma cells in culture following treatment with methyl methanesulfonate (MMS), a direct acting genotoxin, and sodium chloride (NaCl), which induces mutations in these cells through indirect mechanisms at high concentrations. The mouse lymphoma cells were treated for 4 or 24 h and the cells were harvested for RNA isolation at the end of the treatment. Analysis of the transcriptome was performed using Clontech Mouse 1.2K cDNA microarrays (1185 genes) and hybridized using 32P-labeled cDNA. The microwell methodology was used to quantify the mutagenic response. Of the genes examined, MMS altered the expression (1.5-fold or more) of only five (four at 4 h and one after 24 h treatment). NaCl altered two genes after 4 h treatment, but after 24 h it altered 19 genes (13 down- and six up-regulated). Both compounds altered the expression of several genes associated with apoptosis and NaCl altered genes involved in DNA damage/response and GTP-related proteins. This, along with other data, indicates that the widely used L5178Y TK(+/-) mouse lymphoma cells in culture are relatively recalcitrant in terms of modulating gene expression to deal with genotoxic insult.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Gene Expression/drug effects , Lymphoma/drug therapy , Methyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Animals , Gene Expression Regulation, Neoplastic/drug effects , Mice , Oligonucleotide Array Sequence Analysis , Sodium Chloride/pharmacology
20.
Toxicology ; 174(2): 69-78, 2002 May 24.
Article in English | MEDLINE | ID: mdl-11985884

ABSTRACT

Although the insecticide dichlorodiphenyltrichloroethane (DDT) was banned in the US in 1972, DDT and its major metabolite 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) are still persistent in the environment. DDE at high doses is antiandrogenic in fetal and adult rats and, therefore, is of concern in humans exposed environmentally. The objective of this work was to determine the dose-response relationship between DDE and its antiandrogenic effect in adult, male rats and to quantitate the concentration of DDE in tissues following oral exposures. Adult, male, Long-Evans rats (11-13 weeks) were castrated, implanted with testosterone capsules, and dosed by oral gavage with 0, 5, 12.5, 25, 50, or 100 mg DDE per kg body weight (BW) per day in corn oil for 4 days. On day 5 the rats were euthanized and liver, adrenals, ventral prostate, and seminal vesicles were weighed as a measure of response to DDE exposure. Blood, adrenals, brain, fat, kidney, lung, liver, muscle, ventral prostate, seminal vesicles, and skin were analyzed for DDE concentrations. Testosterone and dihydrotestosterone were measured in serum. There was a decrease in prostate weight that was not dose dependent; only the prostate weights in rats treated with 12.5 mg DDE per kg BW per day were reduced significantly compared to controls. The liver displayed a dose-dependent increase in weight that was significantly greater than control at DDE doses of 25, 50, and 100 mg/kg BW per day. Blood concentrations of DDE ranged from 0.32 to 11.3 ppm, while tissue concentrations ranged from 0.72 to 2620 ppm with the highest concentration in fat. Although DDE concentrations in the androgen-responsive tissues were higher than concentrations previously shown in vitro to inhibit androgen-receptor transcriptional activity, these concentrations did not appear to be antiandrogenic in vivo. The doses administered to the rats in this study are at least 10(5)-fold greater than the daily, average of human dietary intake of DDE.


Subject(s)
Androgen Antagonists/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Insecticides/toxicity , Androgen Antagonists/pharmacokinetics , Animals , Dichlorodiphenyl Dichloroethylene/pharmacokinetics , Dihydrotestosterone/blood , Dose-Response Relationship, Drug , Injections, Intravenous , Liver/drug effects , Liver/pathology , Male , Orchiectomy , Organ Size/drug effects , Oxidation-Reduction , Prostate/drug effects , Prostate/pathology , Rats , Rats, Long-Evans , Seminal Vesicles/anatomy & histology , Seminal Vesicles/drug effects , Testosterone/blood , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...