Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 65: 52-60, 2017 05.
Article in English | MEDLINE | ID: mdl-28526119

ABSTRACT

Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34°C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28°C compared to strain NQAIF116, which had highest growth at 24°C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher frequency of reported ciguatera illness in populated temperate Australian regions, outside the tropical range of the GBR. Therefore, the findings on salinity and temperature tolerance of two strains of G. carpenteri indicates potential adaptability to different local environmental conditions. These are baseline data for future investigations into the potential southward range expansion of ciguatera-causing dinoflagellates originating from the GBR.


Subject(s)
Dinoflagellida/growth & development , Australia , Ciguatera Poisoning , Climate Change , Coral Reefs , Harmful Algal Bloom , Salinity , Temperature
2.
PLoS One ; 8(10): e79278, 2013.
Article in English | MEDLINE | ID: mdl-24194962

ABSTRACT

BACKGROUND: Dinoflagellates are important primary producers, crucial in marine food webs. Toxic strains, however, are the main causative agents of non-bacterial seafood poisoning, a major concern for public health worldwide. Despite their importance, taxonomic uncertainty within many genera of dinoflagellates is still high. The genus Coolia includes potentially harmful species and the diversity within the genus is just starting to become apparent. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, cultures were established from strains of Coolia spp. isolated from the central Great Barrier Reef (GBR). Cultures were identified based on thecal plate morphology and analyses of sequences (18S, ITS and 28S) from the nuclear rRNA operon. We report that the central GBR harbors a high diversity of Coolia species, including two species known to be capable of toxin production (C. tropicalis and C. malayensis), as well as the non-toxic C. canariensis. The strain of C. canariensis isolated from the GBR may in fact be a cryptic species, closely related but nevertheless phylogenetically distinct from the strain on which the holotype of C. canariensis was based. We also found evidence of the occurrence of a cryptic species morphologically very similar to both C. malayensis and C. monotis. The consequences of taxonomic confusion within the genus are discussed. CONCLUSION/SIGNIFICANCE: The central GBR region harbors a previously unreported high diversity of Coolia spp., including two species known to potentially produce toxins. The presence of a cryptic species of unknown toxicity highlights the importance of cryptic diversity within dinoflagellates.


Subject(s)
Biodiversity , Coral Reefs , Dinoflagellida/genetics , Dinoflagellida/ultrastructure , Phylogeny , Australia , Base Sequence , Bayes Theorem , DNA Primers/genetics , DNA, Ribosomal/genetics , Dinoflagellida/classification , Microscopy, Electron, Scanning , Models, Genetic , Molecular Sequence Data , Pacific Ocean , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...