Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 561(7721): E3, 2018 09.
Article in English | MEDLINE | ID: mdl-29955153

ABSTRACT

In equation (1) of this Letter, the closing bracket was missing; in Extended Data Fig. 1 and the accompanying legend, 'Φ(pd)' should have been 'Φ2(pd)', and in the Methods the text "Odd J assignments are uncertain by ±1." has been added. These errors have all been corrected online.

2.
Nature ; 557(7707): 687-690, 2018 05.
Article in English | MEDLINE | ID: mdl-29795352

ABSTRACT

Carbon burning powers scenarios that influence the fate of stars, such as the late evolutionary stages of massive stars 1 (exceeding eight solar masses) and superbursts from accreting neutron stars2,3. It proceeds through the 12C + 12C fusion reactions that produce an alpha particle and neon-20 or a proton and sodium-23-that is, 12C(12C, α)20Ne and 12C(12C, p)23Na-at temperatures greater than 0.4 × 109 kelvin, corresponding to astrophysical energies exceeding a megaelectronvolt, at which such nuclear reactions are more likely to occur in stars. The cross-sections 4 for those carbon fusion reactions (probabilities that are required to calculate the rate of the reactions) have hitherto not been measured at the Gamow peaks 4 below 2 megaelectronvolts because of exponential suppression arising from the Coulomb barrier. The reference rate 5 at temperatures below 1.2 × 109 kelvin relies on extrapolations that ignore the effects of possible low-lying resonances. Here we report the measurement of the 12C(12C, α0,1)20Ne and 12C(12C, p0,1)23Na reaction rates (where the subscripts 0 and 1 stand for the ground and first excited states of 20Ne and 23Na, respectively) at centre-of-mass energies from 2.7 to 0.8 megaelectronvolts using the Trojan Horse method6,7 and the deuteron in 14N. The cross-sections deduced exhibit several resonances that are responsible for very large increases of the reaction rate at relevant temperatures. In particular, around 5 × 108 kelvin, the reaction rate is boosted to more than 25 times larger than the reference value 5 . This finding may have implications such as lowering the temperatures and densities 8 required for the ignition of carbon burning in massive stars and decreasing the superburst ignition depth in accreting neutron stars to reconcile observations with theoretical models 3 .

3.
Phys Rev Lett ; 119(13): 132501, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29341708

ABSTRACT

The decay path of the Hoyle state in ^{12}C (E_{x}=7.654 MeV) has been studied with the ^{14}N(d,α_{2})^{12}C(7.654) reaction induced at 10.5 MeV. High resolution invariant mass spectroscopy techniques have allowed us to unambiguously disentangle direct and sequential decays of the state passing through the ground state of ^{8}Be. Thanks to the almost total absence of background and the attained resolution, a fully sequential decay contribution to the width of the state has been observed. The direct decay width is negligible, with an upper limit of 0.043% (95% C.L.). The precision of this result is about a factor 5 higher than previous studies. This has significant implications on nuclear structure, as it provides constraints to 3α cluster model calculations, where higher precision limits are needed.

4.
Phys Rev Lett ; 109(23): 232701, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368189

ABSTRACT

The (13)C(α,n)(16)O reaction is the neutron source for the main component of the s-process, responsible for the production of most nuclei in the mass range 90

SELECTION OF CITATIONS
SEARCH DETAIL
...