Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(13): 6343-6352, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36916300

ABSTRACT

Microphones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications. We address performance parameters relevant for acoustic sensing, including mechanical sensitivity, limit of detection and nonlinear distortion, and discuss the trade-offs and limitations in the design of graphene microphones. We demonstrate superior mechanical sensitivities of the graphene membranes, reaching more than 2 orders of magnitude higher compliances than commercial MEMS devices, and report a limit of detection as low as 15 dBSPL, which is 10-15 dB lower than that featured by current MEMS microphones.

2.
Sensors (Basel) ; 23(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679677

ABSTRACT

Airborne acoustic surveillance would enable and ease several applications, including security surveillance, urban and industrial noise monitoring, rescue missions, and wildlife monitoring. Airborne surveillance with an acoustic camera mounted on an airship would provide the deployment flexibility and utility required by these applications. Nevertheless, and problematically for these applications, there is not a single acoustic camera mounted on an airship yet. We make significant advances towards solving this problem by designing and constructing an acoustic camera for direct mounting on the hull of a UAV airship. The camera consists of 64 microphones, a central processing unit, and software for data acquisition and processing dedicatedly developed for far-field low-level acoustic signal detection. We demonstrate a large-aperture mock-up camera operation on the ground, although all preparations have been made to integrate the camera onto an airship. The camera has an aperture of 2 m and has been designed for surveillance from a height up to 300 m, with a spatial resolution of 12 m.


Subject(s)
Aircraft , Animals, Wild , Animals , Software
3.
Sensors (Basel) ; 22(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080785

ABSTRACT

The HeartPy Python toolkit for analysis of noisy signals from heart rate measurements is an excellent tool to use in conjunction with novel wearable sensors. Nevertheless, most of the work to date has focused on applying the toolkit to data measured with commercially available sensors. We demonstrate the application of the HeartPy functions to data obtained with a novel graphene-based heartbeat sensor. We produce the sensor by laser-inducing graphene on a flexible polyimide substrate. Both graphene on the polyimide substrate and graphene transferred onto a PDMS substrate show piezoresistive behavior that can be utilized to measure human heartbeat by registering median cubital vein motion during blood pumping. We process electrical resistance data from the graphene sensor using HeartPy and demonstrate extraction of several heartbeat parameters, in agreement with measurements taken with independent reference sensors. We compare the quality of the heartbeat signal from graphene on different substrates, demonstrating that in all cases the device yields results consistent with reference sensors. Our work is a first demonstration of successful application of HeartPy to analysis of data from a sensor in development.


Subject(s)
Graphite , Wearable Electronic Devices , Heart Rate , Humans , Lasers , Motion
4.
Beilstein J Nanotechnol ; 13: 666-674, 2022.
Article in English | MEDLINE | ID: mdl-35957672

ABSTRACT

Electrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is typically polydisperse, containing particles of various sizes, which is not optimal for applications. We employed cascade centrifugation to select specific particle sizes in solution and prepared thin films from those graphene particles using the Langmuir-Blodgett assembly. Employing centrifugation speeds of 3, 4, and 5 krpm, further diluting the solutions in different volumes of solvent, we reliably and consistently obtained films of tunable thickness. We show that there is a limit to how thin these films can be, which is imposed by the percolation threshold. The percolation threshold is quantitatively compared to results found in literature that are obtained using other, more complex graphene film fabrication methods, and is found to occur with a percolation exponent and percolative figure of merit that are of the same order as results in literature. A maximum optical transparency of 82.4% at a wavelength of 660 nm is obtained for these films, which is in agreement with earlier works on Langmuir-Blodgett assembled ultrasonic-assisted liquid-phase exfoliated graphene. Our work demonstrates that films that are in all respects on par with films of graphene obtained through other solution-based processes can be produced from inexpensive and widely available centrifugal post-processing of existing commercially available solutions of electrochemically exfoliated graphene. The demonstrated methodology will lower the entry barriers for new research and industrial uses, since it allows researchers with no exfoliation experience to make use of widely available graphene materials.

5.
Nanotechnology ; 32(2): 025505, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-32942262

ABSTRACT

Humidity sensing is important to a variety of technologies and industries, ranging from environmental and industrial monitoring to medical applications. Although humidity sensors abound, few available solutions are thin, transparent, compatible with large-area sensor production and flexible, and almost none are fast enough to perform human respiration monitoring through breath detection or real-time finger proximity monitoring via skin humidity sensing. This work describes chemiresistive graphene-based humidity sensors produced in few steps with facile liquid phase exfoliation followed by Langmuir-Blodgett assembly that enables active areas of practically any size. The graphene sensors provide a unique mix of performance parameters, exhibiting resistance changes up to 10% with varying humidity, linear performance over relative humidity (RH) levels between 8% and 95%, weak response to other constituents of air, flexibility, transparency of nearly 80%, and response times of 30 ms. The fast response to humidity is shown to be useful for respiration monitoring and real-time finger proximity detection, with potential applications in flexible touchless interactive panels.

6.
Chemphyschem ; 22(3): 336-341, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33245835

ABSTRACT

Functionalization of electrodes is a wide-used strategy in various applications ranging from single-molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non-equilibrium Green's function formalism combined with density functional theory, that single-species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in-gap electrostatic field, induced by species-dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field-effect transistors. We also observed the local gating in graphene nanopores terminated with different single-species atoms. Nitrogen-terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in-gap potential can be transformed from a plateau-like to a saddle-like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle-like potential is applicable in single-ion trapping and desalination devices.

7.
Phys Rev Lett ; 112(10): 103603, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24679293

ABSTRACT

We study the dynamics of a laser-trapped nanoparticle in high vacuum. Using parametric coupling to an external excitation source, the linewidth of the nanoparticle's oscillation can be reduced by three orders of magnitude. We show that the oscillation of the nanoparticle and the excitation source are synchronized, exhibiting a well-defined phase relationship. Furthermore, the external source can be used to controllably drive the nanoparticle into the nonlinear regime, thereby generating strong coupling between the different translational modes of the nanoparticle. Our work contributes to the understanding of the nonlinear dynamics of levitated nanoparticles in high vacuum and paves the way for studies of pattern formation, chaos, and stochastic resonance.


Subject(s)
Nanoparticles/chemistry , Nonlinear Dynamics , Silicon Dioxide/chemistry , Vacuum
8.
Nature ; 487(7405): 77-81, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22722861

ABSTRACT

The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons­coupled excitations of photons and charge carriers­in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short­more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light­matter interactions for quantum devices and biosensing applications.

9.
Opt Lett ; 36(7): 1170-2, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21479019

ABSTRACT

We experimentally study the fields close to an interface between two photonic crystal waveguides that have different dispersion properties. After the transition from a waveguide in which the group velocity of light is v(g) ~ c/10 to a waveguide in which it is v(g) ~ c/100, we observe a gradual increase in the field intensity and the lateral spreading of the mode. We attribute this evolution to the existence of a weakly evanescent mode that exponentially decays away from the interface. We compare this to the situation where the transition between the waveguides only leads to a minor change in group velocity and show that, in that case, the evolution is absent. Furthermore, we apply novel numerical mode extraction techniques to confirm experimental results.

10.
Opt Express ; 18(15): 16112-9, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20720996

ABSTRACT

We characterize bending losses of curved plasmonic nanowire waveguides for radii of curvature ranging from 1 to 12 microm and widths down to 40 nm. We use near-field measurements to separate bending losses from propagation losses. The attenuation due to bending loss is found to be as low as 0.1 microm(-1) for a curved waveguide with a width of 70 nm and a radius of curvature of 2 microm. Experimental results are supported by Finite Difference Time Domain simulations. An analytical model developed for dielectric waveguides is used to predict the trend of rising bending losses with decreasing radius of curvature in plasmonic nanowires.

11.
Phys Rev Lett ; 102(20): 203904, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19519030

ABSTRACT

We show with both experiment and calculation that highly confined surface plasmon polaritons can be efficiently excited on metallic nanowires through the process of mode transformation. One specific mode in a metallic waveguide is identified that adiabatically transforms to the confined nanowire mode as the waveguide width is reduced. Phase- and polarization-sensitive near-field investigation reveals the characteristic antisymmetric polarization nature of the mode and explains the coupling mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...