Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(13): 3581-3584, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630904

ABSTRACT

We present a direct measurement of the spatiotemporal coherence of parametric down-conversion in the range of negative group-velocity dispersion. In this case, the frequency-angular spectra are ring-shaped, and temporal coherence is coupled to spatial coherence. Correspondingly, the lack of coherence due to spatial displacement can be compensated for with the introduction of time delay. We show a simple technique, based on a modified Mach-Zehnder interferometer, which allows us to measure time coherence and near-field space coherence simultaneously, with complete control over both variables. This technique is also suitable for the measurement of second-order coherence, where the main applications are related to two-photon spectroscopy.

2.
Opt Express ; 27(25): 36154-36163, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873400

ABSTRACT

We address feasibility of continuous-variable quantum key distribution using bright multimode coherent states of light and homodyne detection. We experimentally verify the possibility to properly select signal modes by matching them with the local oscillator and this way to decrease the quadrature noise concerned with unmatched bright modes. We apply the results to theoretically predict the performance of continuous-variable quantum key distribution scheme using multimode coherent states in scenarios where modulation is applied either to all the modes or only to the matched ones, and confirm that the protocol is feasible at high overall brightness. Our results open the pathway towards full-scale implementation of quantum key distribution using bright light, thus bringing quantum communication closer to classical optics.

3.
Phys Rev Lett ; 123(12): 123606, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633963

ABSTRACT

Extreme events appear in many physics phenomena, whenever the probability distribution has a "heavy tail" differing very much from the equilibrium one. Most unusual are the cases of power-law (Pareto) probability distributions. Among their many manifestations in physics, from "rogue waves" in the ocean to Lévy flights in random walks, Pareto dependences can follow very different power laws. For some outstanding cases, the power exponents are less than 2, leading to indefinite values not only for higher moments but also for the mean. Here we present the first evidence of indefinite-mean Pareto distribution of photon numbers at the output of nonlinear effects pumped by parametrically amplified vacuum noise, known as bright squeezed vacuum (BSV). We observe a Pareto distribution with power exponent 1.31 when BSV is used as a pump for supercontinuum generation, and other heavy-tailed distributions (however, with definite moments) when it pumps optical harmonics generation. Unlike in other fields, we can flexibly control the Pareto exponent by changing the experimental parameters. This extremely fluctuating light is interesting for ghost imaging and for quantum thermodynamics as a resource to produce more efficiently nonequilibrium states by single-photon subtraction, the latter of which we demonstrate experimentally.

4.
Phys Rev Lett ; 119(22): 223603, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29286804

ABSTRACT

The rate of an n-photon effect generally scales as the nth order autocorrelation function of the incident light, which is high for light with strong photon-number fluctuations. Therefore, "noisy" light sources are much more efficient for multiphoton effects than coherent sources with the same mean power, pulse duration, and repetition rate. Here we generate optical harmonics of the order of 2-4 from a bright squeezed vacuum, a state of light consisting of only quantum noise with no coherent component. We observe up to 2 orders of magnitude enhancement in the generation of optical harmonics due to ultrafast photon-number fluctuations. This feature is especially important for the nonlinear optics of fragile structures, where the use of a noisy pump can considerably increase the effect without overcoming the damage threshold.

5.
Opt Lett ; 41(12): 2827-30, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27304299

ABSTRACT

We report on the observation of an unusual type of parametric downconversion. In the regime where collinear degenerate emission is in the anomalous range of group-velocity dispersion, its spectrum is restricted in both angle and wavelength. Detuning from exact collinear-degenerate phase-matching leads to a ring shape of the wavelength-angular spectrum, suggesting a new type of spatiotemporal coherence and entanglement of photon pairs. By imposing a phase varying in a specific way in both angle and wavelength, one can obtain an interesting state of an entangled photon pair, with the two photons being never at the same point at the same time.

6.
Nat Commun ; 6: 7707, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26184987

ABSTRACT

Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.

SELECTION OF CITATIONS
SEARCH DETAIL
...