Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 50(4): 303-313, 2023 04.
Article in English | MEDLINE | ID: mdl-36914588

ABSTRACT

Cerium oxide nanoparticles (nCeO2 ) are interesting nanomaterials due to their redox properties. Their wide application could result in unexpected consequences to environmental safety. Unlike acute toxicity, the trans-generational effects of carbohydrate-coated nCeO2 in the environment are still unknown. The main aim of this study was to investigate the effect of treating maternal plants of Chenopodium rubrum L. (red goosefoot) and Sinapis alba L. (white mustard) with uncoated (CeO2 ) and glucose-, levan-, or pullulan-coated nCeO2 (G-, L-, or P-CeO2 ) during seed germination on morphological and physiological characteristics of produced seeds in two subsequent generations. The plant response was studied by measuring germination percentage (Ger), total protein content (TPC), total phenolic content (TPhC), total antioxidative activity (TAA), and catalase (CAT) activity. Results showed that maternal effects of the different nCeO2 treatments persist to at least the second generation in seeds. Generally, C. rubrum was more sensitive to nCeO2 treatments than S. alba . The coated nCeO2 were more effective than uncoated ones in both plant species; L- and P-CeO2 were the most effective in S. alba , while CeO2 and G-CeO2 had a dominant impact in C. rubrum . Enhanced germination in all tested generations of S. alba seeds recommends nCeO2 for seed priming.


Subject(s)
Chenopodium , Nanoparticles , Sinapis/metabolism , Nanoparticles/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Seeds , Chenopodium/metabolism
2.
Aquat Toxicol ; 236: 105867, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34052720

ABSTRACT

Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles' accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L-1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri).


Subject(s)
Cerium/toxicity , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Animals , Aquatic Organisms , Daphnia/drug effects , Fructans/pharmacology , Glucans , Glucose , Zebrafish
3.
Plants (Basel) ; 8(11)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698836

ABSTRACT

: Reports about the influence of cerium-oxide nanoparticles (nCeO2) on plants are contradictory due to their positive and negative effects on plants. Surface modification may affect the interaction of nCeO2 with the environment, and hence its availability to plants. In this study, the uncoated and glucose-, levan-, and pullulan-coated nCeO2 were synthesized and characterized. The aim was to determine whether nontoxic carbohydrates alter the effect of nCeO2 on the seed germination, plant growth, and metabolism of wheat and pea. We applied 200 mgL-1 of nCeO2 on plants during germination (Ger treatment) or three week-growth (Gro treatment) in hydroponics. The plant response to nCeO2 was studied by measuring changes in Ce concentration, total antioxidative activity (TAA), total phenolic content (TPC), and phenolic profile. Our results generally revealed higher Ce concentration in plants after the treatment with coated nanoparticles compared to uncoated ones. Considering all obtained results, Ger treatment had a stronger impact on the later stages of plant development than Gro treatment. The Ger treatment had a stronger impact on TPC and plant elongation, whereas Gro treatment affected more TAA and phenolic profile. Among nanoparticles, levan-coated nCeO2 had the strongest and positive impact on tested plants. Wheat showed higher sensitivity to all treatments.

4.
Bull Environ Contam Toxicol ; 103(2): 261-266, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31227854

ABSTRACT

Accumulation of 17 elements in muscle and liver of common nase and vimba bream, caught between February and May 2016 in the Danube River (1173 river kilometer), were assessed by ICP-OES. The principal component analysis grouped muscle and liver samples based on element concentrations (muscle grouped by higher Ba and Sr values, and liver grouped by higher Al, B, Cd, Cr, Cu, Fe, Mn, and Zn values), but no grouping between the two species was observed. Concentrations of Ba, Cu, Fe, and Zn were significantly higher in muscle, and concentrations of Ba, Cd, Cu, and Mn in liver of common nase, while vimba bream had significantly higher concentrations of Cr and Fe in liver. Common nase has a higher affinity for bioaccumulation of Cu, Fe, and Zn in muscle, while vimba bream has a higher affinity for Al, Cd, and Cr in muscle.


Subject(s)
Cyprinidae/metabolism , Environmental Monitoring/methods , Liver/chemistry , Metals, Heavy/analysis , Muscles/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Environmental Biomarkers/drug effects , Serbia
5.
Ecotoxicol Environ Saf ; 153: 238-247, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29454232

ABSTRACT

Chub (Squalius cephalus) specimens were collected in Korenita River seven months after spillover from the waste water of antimony mine tailing pond and compared with chub living in Kruscica reservoir (intended for water supply) and Meduvrsje reservoir (influenced by intense emission of industrial, urban and rural wastewater). Concentrations of 15 elements (Al, As, B, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Si, Sr, Zn) were determined in muscle, liver and gills of chub by inductively coupled plasma optical spectrometry (ICP-OES) and histopathological alterations in liver and gills were assessed. Chub specimens from Korenita River had higher concentrations of As, Ba and Pb in all three investigated tissues as well as higher total histopathological index values than chub from reservoirs. Specimens from Meduvrsje reservoir were characterized by higher values for concentrations of Cu and Si in muscle tissue and higher values for regressive histopathological alterations in gills. Individuals of chub from Kruscica reservoir had the highest concentrations of Fe in liver, Hg in muscle and Sr and Zn in muscle while gills had the lowest value of total histopathological index. The results from the present study showed higher level of histopathological alterations as a result of mine tailing accident. As a result of mixed contamination on the Meduvrsje site, histopathological index values of gills were in line with the index value from Korenita River. Increased values for Fe and Sr in chub tissue from Kruscica reservoir could be explained by geological structure of the site which is characterized by magmatic rock rich in Cu, Fe and Ni as well as dominant carbonate sediment complex of marine origin with increased level of Sr.


Subject(s)
Cyprinidae/metabolism , Environmental Monitoring/methods , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Gills/chemistry , Gills/pathology , Liver/chemistry , Liver/pathology , Muscles/chemistry , Muscles/pathology , Rivers/chemistry , Serbia , Tissue Distribution
6.
Ecotoxicol Environ Saf ; 98: 196-202, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24054751

ABSTRACT

Pikeperch (Sander lucioperca), European catfish (Silurus glanis), burbot (Lota lota), and common carp (Cyprinus carpio) were collected from the Danube River (Belgrade section, Serbia), and samples of liver, muscle, and gills were analyzed for Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of species and tissue selection in monitoring research, contaminant studies, and human health research. The Kruskal-Wallis test revealed significant differences between fish species in regard to metal levels in liver, muscle, and gills. The principal component analysis (PCA) indicated that the studied fish species could be grouped on the basis of the level of analyzed elements in liver and gills. The Mann-Whitney test showed two subsets (one comprising two piscivorous species, pikeperch and catfish, and the other, two polyphagous species, burbot and carp) in regard to Cr and Hg levels in liver (higher levels in piscivorous species), as well as B, Fe, and Hg in gills (B and Fe with higher levels in polyphagous and Hg in piscivorous species), and As in muscle (higher levels in polyphagous species). Carp had distinctly higher levels of Cd, Cu, and Zn in liver in comparison to other three species. None of the elements exceeded the maximum acceptable concentrations (MAC). However, since Hg levels are close to the prescribed MAC levels, the consumption of these fishes can be potentially hazardous for humans.


Subject(s)
Fishes/metabolism , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Carps/metabolism , Catfishes/metabolism , Gadiformes/metabolism , Gills/chemistry , Humans , Liver/chemistry , Metals, Heavy/metabolism , Muscles/chemistry , Perciformes/metabolism , Rivers , Serbia , Species Specificity , Tissue Distribution , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...