Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 15693, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666606

ABSTRACT

The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1271-1274, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440622

ABSTRACT

This paper presents a multi-modal Alzheimer's disease (AD) classification framework based on a convolutional neural network (CNN) architecture. The devised model takes structural MRI, and clinical assessment and genetic (APOe4) measures as inputs. Our CNN structure is designed to be efficient in its use of parameters which reduces overfitting, computational complexity, memory requirements and speed of prototyping. This is achieved by factorising the convolutional layers in parallel streams which also enables the simultaneous extraction of high and low level feature representations. Our method consistently achieves high classification results in discriminating between AD and control subjects with an average of 99% accuracy, 98% sensitivity, 100% specificity and an AUC of 1 across all test folds. Our study confirms that careful tuning of CNN characteristics can result in a framework which delivers extremely accurate predictions in a clinical problem despite data paucity, opening new avenues for application to prediction tasks which regard patient stratification, prediction of clinical evolution and eventually personalised medicine applications.


Subject(s)
Alzheimer Disease , Humans , Magnetic Resonance Imaging , Nerve Net , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...