Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38257948

ABSTRACT

Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.

2.
J Bacteriol ; 205(9): e0017223, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37695854

ABSTRACT

Dental caries is among the most prevalent chronic diseases worldwide. Streptococcus mutans, the chief causative agent of caries, uses a 25-kDa manganese-dependent SloR protein to coordinate the uptake of essential manganese with the transcription of its virulence attributes. Small non-coding RNAs (sRNAs) can either enhance or repress gene expression, and reports in the literature ascribe an emerging role for sRNAs in the environmental stress response. Herein, we focused our attention on 18-50 nt sRNAs as mediators of the S. mutans SloR and manganese regulons. Specifically, the results of RNA sequencing revealed 19 sRNAs in S. mutans, which were differentially transcribed in the SloR-proficient UA159 and SloR-deficient GMS584 strains, and 10 sRNAs that were differentially expressed in UA159 cells grown in the presence of low vs high manganese. We describe SmsR1532 and SmsR1785 as SloR- and manganese-responsive sRNAs that are processed from large transcripts and that bind SloR directly in their promoter regions. The predicted targets of these sRNAs include regulators of metal ion transport, growth management via a toxin-antitoxin operon, and oxidative stress tolerance. These findings support a role for sRNAs in coordinating intracellular metal ion homeostasis with virulence gene control in an important oral cariogen. IMPORTANCE Small regulatory RNAs (sRNAs) are critical mediators of environmental signaling, particularly in bacterial cells under stress, but their role in Streptococcus mutans is poorly understood. S. mutans, the principal causative agent of dental caries, uses a 25-kDa manganese-dependent protein, called SloR, to coordinate the regulated uptake of essential metal ions with the transcription of its virulence genes. In the present study, we identified and characterized sRNAs that are both SloR and manganese responsive. Taken together, this research can elucidate the details of regulatory networks that engage sRNAs in an important oral pathogen and that can enable the development of an effective anti-caries therapeutic.


Subject(s)
Cariostatic Agents , Dental Caries , Humans , Manganese , Regulon , Streptococcus mutans/genetics
3.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37398324

ABSTRACT

Dental caries is among the most prevalent chronic infectious diseases worldwide. Streptococcus mutans , the chief causative agent of caries, uses a 25 kDa manganese dependent SloR protein to coordinate the uptake of essential manganese with the transcription of its virulence attributes. Small non-coding RNAs (sRNAs) can either enhance or repress gene expression and reports in the literature ascribe an emerging role for sRNAs in the environmental stress response. Herein, we identify 18-50 nt sRNAs as mediators of the S. mutans SloR and manganese regulons. Specifically, the results of sRNA-seq revealed 56 sRNAs in S. mutans that were differentially transcribed in the SloR-proficient UA159 and SloR-deficient GMS584 strains, and 109 sRNAs that were differentially expressed in UA159 cells grown in the presence of low versus high manganese. We describe SmsR1532 and SmsR1785 as SloR- and/or manganese-responsive sRNAs that are processed from large transcripts, and that bind SloR directly in their promoter regions. The predicted targets of these sRNAs include regulators of metal ion transport, growth management via a toxin-antitoxin operon, and oxidative stress tolerance. These findings support a role for sRNAs in coordinating intracellular metal ion homeostasis with virulence gene control in an important oral cariogen. IMPORTANCE: Small regulatory RNAs (sRNAs) are critical mediators of environmental signaling, particularly in bacterial cells under stress, but their role in Streptococcus mutans is poorly understood. S. mutans, the principal causative agent of dental caries, uses a 25 kDa manganese-dependent protein, called SloR, to coordinate the regulated uptake of essential metal ions with the transcription of its virulence genes. In the present study, we identified and characterize sRNAs that are both SloR- and manganese-responsive. Taken together, this research can elucidate the details of regulatory networks that engage sRNAs in an important oral pathogen, and that can enable the development of an effective anti-caries therapeutic.

4.
J Bacteriol ; 203(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-33753467

ABSTRACT

Streptococcus mutans is a commensal of the human oral microbiome that can promote dental caries under conditions of dysbiosis. This study investigates metalloregulators and their involvement in the S. mutans oxidative stress response. Oxidative stress in the human mouth can derive from temporal increases in reactive oxygen species (ROS) after meal consumption and from endogenous bacterial ROS-producers that colonize the dentition. We hypothesize that the S. mutans PerR (SMU.593) and SloR (SMU.186) metalloregulatory proteins contribute to the regulation of oxidative stress genes and their products. Expression assays with S. mutans UA159 wild type cultures exposed to H2O2 reveal that H2O2 upregulates perR, and that PerR represses sloR transcription upon binding directly to Fur and PerR consensus sequences within the sloR operator. In addition, the results of Western blot experiments implicate the Clp proteolytic system in SloR degradation under conditions of H2O2-stress. To reveal a potential role for SloR in the H2O2-resistant phenotype of S. mutans GMS802 (a perR-deficient strain), we generated a sloR/perR double knockout mutant, GMS1386, where we observed upregulation of the tpx and dpr antioxidant genes. These results are consistent with GMS802 H2O2 resistance and with a role for PerR as a transcriptional repressor. Cumulatively, these findings support a reciprocal relationship between PerR and SloR during the S. mutans oxidative stress response and begin to elucidate the fitness strategies that evolved to foster S. mutans persistence in the transient environments of the human oral cavity.IMPORTANCEIn 2020, untreated dental caries, especially in the permanent dentition, ranked among the most prevalent infectious diseases worldwide, disproportionately impacting individuals of low socioeconomic status. Untreated caries can lead to systemic health problems and has been associated with extended school and work absences, inappropriate use of emergency departments, and an inability for military forces to deploy. Together with public health policy, research aimed at alleviating S. mutans -induced tooth decay is important because it can improve oral health (and overall health), especially in underserved populations. This research, focused on S. mutans metalloregulatory proteins and their gene targets, is significant because it can promote virulence gene control in an important oral pathogen, and contribute to the development of an anti-caries therapeutic that can reduce tooth decay.

5.
Mol Oral Microbiol ; 35(3): 129-140, 2020 06.
Article in English | MEDLINE | ID: mdl-32129937

ABSTRACT

Streptococcus mutans is a colonizer of the human dentition, and under conditions of dysbiosis is the primary causative agent of dental caries. The pathogenic potential of S. mutans depends, in part, on its ability to regulate the transport of metal ions across the plasma membrane to maintain intracellular metal ion homeostasis. Research in our laboratory has focused on the Mn2+ -specific SloC lipoprotein importer and its regulator encoded by the S. mutans sloR gene. Herein, we used a bioinformatics approach to identify a gene on the S. mutans UA159 chromosome, SMU_1176, as a metal ion efflux transporter that contributes to S. mutans manganese ion homeostasis. Metal ion sensitivity assays performed with the wild-type S. mutans UA159 strain and an isogenic SMU_1176 insertion-deletion mutant, called GMS3000, revealed significantly heightened sensitivity of GMS3000 to MnSO4 challenge. 54 Mn uptake experiments support the accumulation of 54 Mn in GMS3000 cell pellets when compared to 54 Mn concentrations in UA159 or in a complemented strain of GMS3000, called GMS3001. Inductively coupled plasma mass spectrometry (ICP-MS) studies were performed in parallel to quantify intracellular manganese concentrations in these strains, the results of which corroborate the 54 Mn uptake studies, and support the SMU_1176 gene product as a Mn2+ efflux protein. Expression profiling experiments revealed de-repression of SMU_1176 gene transcription in the SloR-deficient GMS584 strain of S. mutans, especially under high manganese conditions. In conclusion, the S. mutans SMU_1176 gene, which we renamed mntE, is a manganese efflux transporter that contributes to essential metal ion homeostasis as part of the SloR regulon.


Subject(s)
Dental Caries , Streptococcus mutans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Ions , Manganese/metabolism , Streptococcus mutans/genetics , Streptococcus mutans/metabolism
6.
mSphere ; 5(1)2020 01 08.
Article in English | MEDLINE | ID: mdl-31915219

ABSTRACT

Early epidemiological studies implicated manganese (Mn) as a possible caries-promoting agent, while laboratory studies have indicated that manganese stimulates the expression of virulence-related factors in the dental pathogen Streptococcus mutans To better understand the importance of manganese homeostasis to S. mutans pathophysiology, we first used RNA sequencing to obtain the global transcriptional profile of S. mutans UA159 grown under Mn-restricted conditions. Among the most highly expressed genes were those of the entire sloABC operon, encoding a dual iron/manganese transporter, and an uncharacterized gene, here mntH, that codes for a protein bearing strong similarity to Nramp-type transporters. While inactivation of sloC, which encodes the lipoprotein receptor of the SloABC system, or of mntH alone had no major consequence for the overall fitness of S. mutans, simultaneous inactivation of sloC and mntH (ΔsloC ΔmntH) impaired growth and survival under Mn-restricted conditions, including in human saliva or in the presence of calprotectin. Further, disruption of Mn transport resulted in diminished stress tolerance and reduced biofilm formation in the presence of sucrose. These phenotypes were markedly improved when cells were provided with excess Mn. Metal quantifications revealed that the single mutant strains contained intracellular levels of Mn similar to those seen with the parent strain, whereas Mn was nearly undetectable in the ΔsloC ΔmntH strain. Collectively, these results reveal that SloABC and MntH work independently and cooperatively to promote cell growth under Mn-restricted conditions and that maintenance of Mn homeostasis is essential for the expression of major virulence attributes in S. mutansIMPORTANCE As transition biometals such as manganese (Mn) are essential for all forms of life, the ability to scavenge biometals in the metal-restricted host environment is an important trait of successful cariogenic pathobionts. Here, we showed that the caries pathogen Streptococcus mutans utilizes two Mn transport systems, namely, SloABC and MntH, to acquire Mn from the environment and that the ability to maintain the cellular levels of Mn is important for the manifestation of characteristics that associate S. mutans with dental caries. Our results indicate that the development of strategies to deprive S. mutans of Mn hold promise in the combat against this important bacterial pathogen.


Subject(s)
Bacterial Proteins/genetics , Cation Transport Proteins/genetics , Genetic Fitness , Manganese/metabolism , Operon , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Biofilms/growth & development , Biological Transport , DNA, Bacterial/genetics , Dental Caries/microbiology , Gene Expression Regulation, Bacterial , Humans , Sequence Analysis, RNA
7.
J Bacteriol ; 200(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29735764

ABSTRACT

Streptococcus mutans, one of ∼600 bacterial species in the human oral cavity, is among the most acidogenic constituents of the plaque biofilm. Considered to be the primary causative agent of dental caries, S. mutans harbors a 25-kDa SloR metalloregulatory protein which controls metal ion transport across the bacterial cell membrane to maintain essential metal ion homeostasis. The expression of SloR derives in part from transcriptional readthrough of the sloABC operon, which encodes a Mn2+/Fe2+ ABC transport system. Here we describe the details of the sloABC promoter that drives this transcription as well as those for a novel independent promoter in an intergenic region (IGR) that contributes to downstream sloR expression. Reverse transcriptase PCR (RT-PCR) studies support the occurrence of sloR transcription that is independent of sloABC expression, and the results of 5' rapid amplification of cDNA ends (5' RACE) revealed a sloR transcription start site in the IGR, from which the -10 and -35 promoter regions were predicted. The results of gel mobility shift assays support direct SloR binding to the IGR, albeit with a lower affinity than that for SloR binding to the sloABCR promoter. The function of the sloR promoter was validated by semiquantitative real-time PCR (qRT-PCR) experiments. Interestingly, sloR expression was not significantly affected when bacteria were grown in the presence of a high manganese concentration, whereas expression of the sloABC operon was repressed under these conditions. The results of in vitro transcription studies support the occurrence of SloR-mediated transcriptional activation of sloR and repression of sloABC Taken together, these findings implicate SloR as a bifunctional regulator that represses sloABC promoter activity and encourages sloR transcription from an independent promoter.IMPORTANCE Tooth decay is a ubiquitous infectious disease that is especially pervasive in underserved communities worldwide. S. mutans-induced carious lesions cause functional, physical, and/or esthetic impairment in the vast majority of adults and in 60 to 90% of schoolchildren in industrialized countries. Billions of dollars are spent annually on caries treatment, and productivity losses due to absenteeism from the workplace are significant. Research aimed at alleviating S. mutans-induced tooth decay is important because it can address the socioeconomic disparity that is associated with dental cavities and improve overall general health, which is inextricably linked to oral health. Research focused on the S. mutans SloR metalloregulatory protein can guide the development of novel therapeutics and thus alleviate the burden of dental cavities.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Promoter Regions, Genetic , Streptococcus mutans/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA, Bacterial/physiology , Homeostasis , Models, Molecular , Protein Binding , Protein Conformation , Streptococcus mutans/genetics , Transcription, Genetic
8.
mSystems ; 2(1)2017.
Article in English | MEDLINE | ID: mdl-28066817

ABSTRACT

In the cariogenic Streptococcus mutans, competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans.

9.
J Bacteriol ; 197(22): 3601-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26350131

ABSTRACT

UNLABELLED: Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn(2+) is better than Zn(2+) at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn(2+) provides insight into the means by which selective activation by Mn(2+) may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE: This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn(2+) and with its SloR recognition element to gain a clearer picture of the regulatory networks that optimize SloR-mediated metal ion homeostasis and virulence gene expression in S. mutans. These experiments can have a significant impact on caries treatment and/or prevention by revealing the S. mutans SloR-DNA binding interface as an appropriate target for the development of novel therapeutic interventions.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial/physiology , Metals/metabolism , Streptococcus mutans/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Conformation
11.
PLoS One ; 9(12): e115975, 2014.
Article in English | MEDLINE | ID: mdl-25536343

ABSTRACT

Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activating its cognate response regulator protein, the sensor kinase, VicK can transphosphorylate a non-cognate stress regulatory response regulator, GcrR, in the presence of manganese. Manganese is an important micronutrient that has been previously correlated with caries incidence, and which serves as an effector of SloR-mediated metalloregulation in S. mutans. Our findings supporting regulatory effects of manganese on the VicRK, GcrR and SloR, and the cross-regulatory networks formed by these components are more complex than previously appreciated. Using DNaseI footprinting we observed overlapping DNA binding specificities for VicR and GcrR in native promoters, consistent with these proteins being part of the same transcriptional regulon. Our results also support a role for SloR as a positive regulator of the vicRK two component signaling system, since its transcription was drastically reduced in a SloR-deficient mutant. These findings demonstrate the regulatory complexities observed with the S. mutans manganese-dependent response, which involves cross-talk between non-cognate signal transduction systems (VicRK and GcrR) to modulate stress response pathways.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Manganese/metabolism , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Bacterial Proteins/genetics , Mutation , Regulon , Signal Transduction
12.
J Bacteriol ; 195(1): 126-34, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23104811

ABSTRACT

Streptococcus mutans is a commensal member of the healthy plaque biofilm and the primary causative agent of dental caries. The present study is an investigation of SloR, a 25-kDa metalloregulatory protein that modulates genes responsible for S. mutans-induced cariogenesis. Previous studies of SloR homologues in other bacterial pathogens have identified three domains critical to repressor functionality: an N-terminal DNA-binding domain, a central dimerization domain, and a C-terminal FeoA (previously SH3-like) domain. We used site-directed mutagenesis to identify critical amino acid residues within each of these domains of the SloR protein. Select residues were targeted for mutagenesis, and nonconservative amino acid substitutions were introduced by overlap extension PCR. Furthermore, three C-terminally truncated SloR variants were generated using conventional PCR. The repressor functionality and DNA-binding ability of each variant was assessed using CAT reporter gene assays, real-time semiquantitative reverse transcriptase (qRT)-PCR, and electrophoretic mobility shift assays. We identified 12 residues within SloR that cause significant derepression of sloABC promoter activity (P < 0.05) compared to the results for wild-type SloR. Derepression was particularly noteworthy in metal ion-binding site 1 mutants, consistent with the site's importance in gene repression by SloR. In addition, a hyperactive SloR(E169A/Q170A) mutant was identified as having significantly heightened repression of sloABC promoter activity, and experiments with C-terminal deletion mutants support involvement of the FeoA domain in SloR-mediated gene repression. Given these results, we describe the functional domains of the S. mutans SloR protein and propose that the hyperactive mutant could serve as a target for rational drug design aimed at repressing SloR-mediated virulence gene expression.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Manganese/metabolism , Streptococcus mutans/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Circular Dichroism , DNA, Bacterial , Electrophoretic Mobility Shift Assay , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Streptococcus mutans/genetics , Streptococcus mutans/pathogenicity , Structure-Activity Relationship , Virulence/genetics
13.
J Bacteriol ; 192(5): 1433-43, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19915021

ABSTRACT

Streptococcus mutans is the primary causative agent of human dental caries, a ubiquitous infectious disease for which effective treatment strategies remain elusive. We investigated a 25-kDa SloR metalloregulatory protein in this oral pathogen, along with its target genes that contribute to cariogenesis. Previous studies have demonstrated manganese- and SloR-dependent repression of the sloABCR metal ion transport operon in S. mutans. In the present study, we demonstrate that S. mutans coordinates this repression with that of certain virulence attributes. Specifically, we noted virulence gene repression in a manganese-containing medium when SloR binds to promoter-proximal sequence palindromes on the S. mutans chromosome. We applied a genome-wide approach to elucidate the sequences to which SloR binds and to reveal additional "class I" genes that are subject to SloR- and manganese-dependent repression. These analyses identified 204 S. mutans genes that are preceded by one or more conserved palindromic SloR recognition elements (SREs). We cross-referenced these genes with those that we had identified previously as SloR and/or manganese modulated in microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) experiments. From this analysis, we identified a number of S. mutans virulence genes that are subject to transcriptional upregulation by SloR and noted that such "class II"-type regulation is dependent on direct SloR binding to promoter-distal SREs. These observations are consistent with a bifunctional role for the SloR metalloregulator and implicate it as a target for the development of therapies aimed at alleviating S. mutans-induced caries formation.


Subject(s)
Gene Expression Regulation, Bacterial , Manganese/metabolism , Regulon , Repressor Proteins/physiology , Streptococcus mutans/physiology , Virulence Factors/biosynthesis , Binding Sites , Conserved Sequence , DNA, Bacterial/metabolism , Gene Expression Profiling , Humans , Inverted Repeat Sequences , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Protein Binding , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Streptococcus mutans/genetics
14.
Microbiology (Reading) ; 154(Pt 4): 1132-1143, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18375805

ABSTRACT

Streptococcus mutans, the primary causative agent of human dental caries, grows as a biofilm on the tooth surface, where it metabolizes dietary carbohydrates and generates acid byproducts that demineralize tooth enamel. A drop in plaque pH stimulates an adaptive acid-tolerance response (ATR) in this oral pathogen that allows it to survive acid challenge at pHs as low as 3.0. In the present study, we describe the growth of an S. mutans mutant, GMS901, that harbours an insertion-deletion mutation in gcrR, a gene that encodes a transcriptional regulatory protein. The mutant is acid-sensitive and significantly compromised in its ATR relative to the UA159 wild-type progenitor strain. Consistent with these findings are the results of real-time quantitative RT-PCR (qRT-PCR) experiments that support the GcrR-regulated expression of known ATR genes, including atpA/E and ffh. Although we observed gcrR transcription that was not responsive to acidic pH, we did note a significant increase in gcrR expression when S. mutans cells were grown in a manganese-restricted medium. Interestingly, the results of gel mobility shift assays indicate that the S. mutans SloR metalloregulatory protein is a potential regulator of gcrR by virtue of its manganese-dependent binding to the gcrR promoter region, and expression studies support the hypothesis that sloR transcription is responsive to manganese deprivation and acidic pH. Taking these results together, we propose that SloR-Mn modulates S. mutans gcrR expression as part of a general stress response, and that GcrR acts downstream of SloR to control the ATR.


Subject(s)
Acids/metabolism , Bacterial Proteins/physiology , Streptococcus mutans/physiology , Transcription Factors/physiology , Bacterial Proteins/genetics , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Gene Order , Humans , INDEL Mutation , Manganese/metabolism , Microbial Viability , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Streptococcus mutans/drug effects , Transcription Factors/genetics
15.
J Bacteriol ; 189(4): 1451-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17114248

ABSTRACT

Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Bacterial Adhesion , Biofilms , Gene Expression Regulation, Bacterial/drug effects , Oxidative Stress , Paraquat/pharmacology , Streptococcus mutans/drug effects , Time Factors
16.
J Bacteriol ; 188(14): 5033-44, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16816176

ABSTRACT

Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Metalloproteins/metabolism , Repressor Proteins/metabolism , Streptococcus mutans/genetics , Virulence/genetics , Bacterial Adhesion , Bacterial Proteins/genetics , Base Sequence , Biofilms , Chlorides/pharmacokinetics , DNA Primers , Ferric Compounds/pharmacokinetics , Gene Deletion , Genetic Complementation Test , Manganese Compounds/pharmacokinetics , Metalloproteins/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Streptococcus mutans/growth & development , Streptococcus mutans/physiology
17.
J Bacteriol ; 187(12): 4064-76, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15937169

ABSTRACT

Bacteria exposed to transient host environments can elicit adaptive responses by triggering the differential expression of genes via two-component signal transduction systems. This study describes the vicRK signal transduction system in Streptococcus mutans. A vicK (putative histidine kinase) deletion mutant (SmuvicK) was isolated. However, a vicR (putative response regulator) null mutation was apparently lethal, since the only transformants isolated after attempted mutagenesis overexpressed all three genes in the vicRKX operon (Smuvic+). Compared with the wild-type UA159 strain, both mutants formed aberrant biofilms. Moreover, the vicK mutant biofilm formed in sucrose-supplemented medium was easily detachable relative to that of the parent. The rate of total dextran formation by this mutant was remarkably reduced compared to the wild type, whereas it was increased in Smuvic+. Based on real-time PCR, Smuvic+ showed increased gtfBCD, gbpB, and ftf expression, while a recombinant VicR fusion protein was shown to bind the promoter regions of the gtfB, gtfC, and ftf genes. Also, transformation efficiency in the presence or absence of the S. mutans competence-stimulating peptide was altered for the vic mutants. In vivo studies conducted using SmuvicK in a specific-pathogen-free rat model resulted in significantly increased smooth-surface dental plaque (Pearson-Filon statistic [PF], <0.001). While the absence of vicK did not alter the incidence of caries, a significant reduction in SmuvicK CFU counts was observed in plaque samples relative to that of the parent (PF, <0.001). Taken together, these findings support involvement of the vicRK signal transduction system in regulating several important physiological processes in S. mutans.


Subject(s)
Bacterial Proteins/physiology , Gene Expression/physiology , Signal Transduction/physiology , Streptococcus mutans/physiology , Animals , Bacterial Adhesion/physiology , Bacterial Proteins/biosynthesis , Biofilms/growth & development , Chromosome Mapping , Chromosomes, Bacterial , Dental Caries/microbiology , Mutation , Rats , Specific Pathogen-Free Organisms , Streptococcus mutans/genetics , Streptococcus mutans/growth & development , Transformation, Bacterial/genetics , Virulence/genetics
18.
Infect Immun ; 71(8): 4351-60, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12874312

ABSTRACT

Streptococcus mutans is the principal acidogenic component of dental plaque that demineralizes tooth enamel, leading to dental decay. Cell-associated glucosyltransferases catalyze the sucrose-dependent synthesis of sticky glucan polymers that, together with glucan binding proteins, promote S. mutans adherence to teeth and cell aggregation. We generated an S. mutans Tn916 transposon mutant, GMS315, which is defective in sucrose-dependent adherence and significantly less cariogenic than the UA130 wild-type progenitor in germfree rats. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and N-terminal sequence analysis confirmed the absence of a 155-kDa glucosyltransferase S (Gtf-S) from GMS315 protein profiles. Mapping of the unique transposon insertion in GMS315 revealed disruption of a putative regulatory region located upstream of gcrR, a gene previously described by Sato et al. that shares significant amino acid identity with other bacterial response regulators (Y. Sato, Y. Yamamoto, and H. Kizaki, FEMS Microbiol. Lett. 186: 187-191, 2000). The gcrR regulator, which we call "tarC," does not align with any of the 13 proposed two-component signal transduction systems derived from in silico analysis of the S. mutans genome, but rather represents one of several orphan response regulators in the genome. The results of Northern hybridization and/or real-time reverse transcription-PCR experiments reveal increased expression of both Gtf-S and glucan binding protein C (GbpC) in a tarC knockout mutant (GMS900), thereby supporting the notion that TarC acts as a negative transcriptional regulator. In addition, we noted that GMS900 has altered biofilm architecture relative to the wild type and is hypocariogenic in germfree rats. Taken collectively, these findings support a role for signal transduction in S. mutans sucrose-dependent adherence and aggregation and implicate TarC as a potential target for controlling S. mutans-induced cariogenesis.


Subject(s)
Bacterial Adhesion/physiology , Dental Caries/etiology , Streptococcus mutans/physiology , Streptococcus mutans/pathogenicity , Amino Acid Sequence , Animals , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Base Sequence , Biofilms , DNA, Bacterial/genetics , Dental Caries/microbiology , Gene Expression Regulation, Bacterial , Genes, Bacterial , Germ-Free Life , Glucosyltransferases/genetics , Glucosyltransferases/physiology , Humans , Microscopy, Electron, Scanning , Molecular Sequence Data , Mutagenesis, Insertional , Rats , Sequence Homology, Amino Acid , Signal Transduction , Streptococcus mutans/genetics , Sucrose/metabolism
19.
Microbiology (Reading) ; 148(Pt 3): 755-762, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11882710

ABSTRACT

Streptococcus parasanguis is a primary colonizer of dental plaque and a major player in subacute bacterial endocarditis. In the present study, the authors report that an ORF (ORF3) located 77 bp downstream of the fimA operon on the S. parasanguis FW213 chromosome complements an Escherichia coli thiol peroxidase (tpx) mutation in glutamine synthetase (GS) protection assays and that GS is protected by the ORF3 gene product in S. parasanguis cell extracts. In addition, the putative streptococcal peroxidase (Tpx(Sp)) protects S. parasanguis from stress caused by H2O2 and is induced by oxygen, as revealed by Northern blot analysis. Taken collectively, these findings support a thiol-dependent antioxidant activity for Tpx in S. parasanguis.


Subject(s)
Antioxidants/metabolism , Fimbriae Proteins , Open Reading Frames/genetics , Periplasmic Proteins , Peroxidase/metabolism , Streptococcus/enzymology , Sulfhydryl Compounds/metabolism , Bacterial Proteins/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Glutamate-Ammonia Ligase , Humans , Hydrogen Peroxide/pharmacology , Mutation , Peroxidase/genetics , Peroxidases/genetics , Streptococcus/genetics
20.
Microbiology (Reading) ; 147(Pt 6): 1599-1610, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11390691

ABSTRACT

Iron uptake, transport and storage in Streptococcus mutans, the principal causative agent of human dental cavities, is unexplored despite early reports in the literature which predict a role for this trace metal in cariogenesis. Experiments in the authors' laboratory revealed several iron-responsive proteins in S. mutans, one of which reacted with a polyclonal antiserum directed against the FimA fimbrial adhesin from Streptococcus parasanguis on Western blots. The results of Western blot and Northern hybridization experiments support an inverse relationship between iron availability and S. mutans fimA expression, and metal ion uptake experiments implicate FimA in S. mutans (55)Fe transport. Cloning of the S. mutans fimA homologue facilitated the construction of a fimA knockout mutant which grew poorly in an iron-limiting medium relative to the wild-type progenitor strain, lending further support to a role for FimA in S. mutans iron transport. The authors also identified and cloned a dtxR-like gene (dlg) located downstream of fimA on the S. mutans chromosome, and noted increased fimA expression in a S. mutans dlg knockout mutant relative to wild-type on RNA spot blots and Western blots. The uptake of (55)Fe, which was also significantly increased in this mutant, was compromised in a fimA/dlg double knockout. These findings are consistent with a role for Dlg in the iron-mediated regulation of fimA, and possibly other S. mutans iron transporters. Finally, the cariogenic potential of the fimA and dlg knockout mutants was not significantly different from that of the wild-type progenitor in a germ-free rat model.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Fimbriae Proteins , Iron/metabolism , Streptococcus mutans/genetics , Bacterial Proteins/metabolism , Biological Transport, Active , Blotting, Northern , Blotting, Western , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Bacterial , RNA, Messenger/analysis , Streptococcus mutans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...