Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
mBio ; 11(5)2020 09 08.
Article in English | MEDLINE | ID: mdl-32900807

ABSTRACT

Mycoviruses are widespread and purportedly common throughout the fungal kingdom, although most are known from hosts in the two most recently diverged phyla, Ascomycota and Basidiomycota, together called Dikarya. To augment our knowledge of mycovirus prevalence and diversity in underexplored fungi, we conducted a large-scale survey of fungi in the earlier-diverging lineages, using both culture-based and transcriptome-mining approaches to search for RNA viruses. In total, 21.6% of 333 isolates were positive for RNA mycoviruses. This is a greater proportion than expected based on previous taxonomically broad mycovirus surveys and is suggestive of a strong phylogenetic component to mycoviral infection. Our newly found viral sequences are diverse, composed of double-stranded RNA, positive-sense single-stranded RNA (ssRNA), and negative-sense ssRNA genomes and include novel lineages lacking representation in the public databases. These identified viruses could be classified into 2 orders, 5 families, and 5 genera; however, half of the viruses remain taxonomically unassigned. Further, we identified a lineage of virus-like sequences in the genomes of members of Phycomycetaceae and Mortierellales that appear to be novel genes derived from integration of a viral RNA-dependent RNA polymerase gene. The two screening methods largely agreed in their detection of viruses; thus, we suggest that the culture-based assay is a cost-effective means to quickly assess whether a laboratory culture is virally infected. This study used culture collections and publicly available transcriptomes to demonstrate that mycoviruses are abundant in laboratory cultures of early-diverging fungal lineages. The function and diversity of mycoviruses found here will help guide future studies into mycovirus origins and ecological functions.IMPORTANCE Viruses are key drivers of evolution and ecosystem function and are increasingly recognized as symbionts of fungi. Fungi in early-diverging lineages are widespread, ecologically important, and comprise the majority of the phylogenetic diversity of the kingdom. Viruses infecting early-diverging lineages of fungi have been almost entirely unstudied. In this study, we screened fungi for viruses by two alternative approaches: a classic culture-based method and by transcriptome-mining. The results of our large-scale survey demonstrate that early-diverging lineages have higher infection rates than have been previously reported in other fungal taxa and that laboratory strains worldwide are host to infections, the implications of which are unknown. The function and diversity of mycoviruses found in these basal fungal lineages will help guide future studies into mycovirus origins and their evolutionary ramifications and ecological impacts.


Subject(s)
Fungal Viruses/classification , Fungal Viruses/genetics , Fungi/virology , Genome, Viral , Phylogeny , Evolution, Molecular , Fungal Viruses/isolation & purification , Fungi/classification , Fungi/growth & development , Plant Diseases/microbiology , RNA, Viral/genetics , Transcriptome
3.
Stud Mycol ; 96: 141-153, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32206138

ABSTRACT

Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species.

4.
Mycologia ; 104(1): 182-97, 2012.
Article in English | MEDLINE | ID: mdl-22067304

ABSTRACT

The genus Metacordyceps contains arthropod pathogens in Clavicipitaceae (Hypocreales) that formerly were classified in Cordyceps sensu Kobayasi et Mains. Of the current arthropod pathogenic genera of Hypocreales, the genus Metacordyceps remains one of the most poorly understood and contains a number of teleomorphic morphologies convergent with species of Cordyceps s.s. (Cordycipitaceae) and Ophiocordyceps (Ophiocordycipitaceae). Of note, the anamorph genera Metarhizium and Pochonia were found to be associated only with Metacordyceps and demonstrated to be phylogenetically informative for the clade. Several species of Cordyceps considered to have uncertain placements (incertae sedis) in the current taxonomic framework of clavicipitoid fungi were collected during field expeditions mostly in eastern Asia. Species reclassified here in Metacordyceps include Cordyceps atrovirens Kobayasi & Shimizu, Cordyceps indigotica Kobayasi & Shimizu, Cordyceps khaoyaiensis Hywel-Jones, Cordyceps kusanagiensis Kobayasi & Shimizu, Cordyceps martialis Speg., Ophiocordyceps owariensis Kobayasi, Cordyceps pseudoatrovirens Kobayasi & Shimizu and Ophicordyceps owariensis f. viridescens (Uchiy. & Udagawa) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. Incorporation of these species in a multigene phylogenetic framework of the major clades of clavicipitoid fungi more than doubled the number of species in Metacordyceps and allowed for refinement of morphological concepts for the genus consistent with the phylogenetic structure. Based on these findings we then discuss evolution of this genus, subgeneric relationships, anamorph connections, and suggest additional species that should be confirmed for possible inclusion in Metacordyceps.


Subject(s)
Hypocreales/classification , Insecta/microbiology , Animals , DNA, Fungal/analysis , DNA, Fungal/genetics , Asia, Eastern , Hypocreales/genetics , Phylogeny
6.
Persoonia ; 22: 129-38, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19915689

ABSTRACT

Featuring a high level of taxon sampling across Ascomycota, we evaluate a multi-gene phylogeny and propose a novel order and class in Ascomycota. We describe two new taxa, Geoglossomycetes and Geoglossales, to host three earth tongue genera: Geoglossum, Trichoglossum and Sarcoleotia as a lineage of 'Leotiomyceta'. Correspondingly, we confirm that these genera are not closely related to the genera Neolecta, Mitrula, Cudonia, Microglossum, Thuemenidum, Spathularia and Bryoglossum, all of which have been previously placed within the Geoglossaceae. We also propose a non-hierarchical system for naming well-resolved nodes, such as 'Saccharomyceta', 'Dothideomyceta', and 'Sordariomyceta' for supraordinal nodes, within the current phylogeny, acting as rankless taxa. As part of this revision, the continued use of 'Leotiomyceta', now as a rankless taxon, is proposed.

7.
Stud Mycol ; 64: 49-83S3, 2009.
Article in English | MEDLINE | ID: mdl-20169023

ABSTRACT

A reappraisal of the phylogenetic integrity of bitunicate ascomycete fungi belonging to or previously affiliated with the Hysteriaceae, Mytilinidiaceae, Gloniaceae and Patellariaceae is presented, based on an analysis of 121 isolates and four nuclear genes, the ribosomal large and small subunits, transcription elongation factor 1 and the second largest RNA polymerase II subunit. A geographically diverse and high density taxon sampling strategy was employed, including multiple isolates/species from the following genera: Anteaglonium (6/4), Encephalographa (1/1), Farlowiella (3/1), Gloniopsis (8/4), Glonium (4/2), Hysterium (12/5), Hysterobrevium (14/3), Hysterographium (2/1), Hysteropatella (2/2), Lophium (4/2), Mytilinidion (13/10), Oedohysterium (5/3), Ostreichnion (2/2), Patellaria (1/1), Psiloglonium (11/3), Quasiconcha (1/1), Rhytidhysteron (8/3), and 24 outgroup taxa. Sequence data indicate that although the Hysteriales are closely related to the Pleosporales, sufficient branch support exists for their separation into separate orders within the Pleosporomycetidae. The Mytilinidiales are more distantly related within the subclass and show a close association with the Gloniaceae. Although there are examples of concordance between morphological and molecular data, these are few. Molecular data instead support the premise of a large number of convergent evolutionary lineages, which do not correspond to previously held assumptions of synapomorphy relating to spore morphology. Thus, within the Hysteriaceae, the genera Gloniopsis, Glonium, Hysterium and Hysterographium are highly polyphyletic. This necessitated the transfer of two species of Hysterium to Oedohysteriumgen. nov. (Od. insidenscomb. nov. and Od. sinense comb. nov.), the description of a new species, Hysterium barrianumsp. nov., and the transfer of two species of Gloniopsis to Hysterobreviumgen. nov. (Hb. smilaciscomb. nov. and Hb. constrictumcomb. nov.). While Hysterographium, with the type Hg. fraxini, is removed from the Hysteriaceae, some of its species remain within the family, transferred here to Oedohysterium (Od. pulchrumcomb. nov.), Hysterobrevium (Hb. moricomb. nov.) and Gloniopsis (Gp. subrugosacomb. nov.); the latter genus, in addition to the type, Gp. praelonga, with two new species, Gp. arciformissp. nov. and Gp. kenyensis sp. nov. The genus Glonium is now divided into Anteaglonium (Pleosporales), Glonium (Gloniaceae), and Psiloglonium (Hysteriaceae). The hysterothecium has evolved convergently no less than five times within the Pleosporomycetidae (e.g., Anteaglonium, Farlowiella, Glonium, Hysterographium and the Hysteriaceae). Similarly, thin-walled mytilinidioid (e.g., Ostreichnion) and patellarioid (e.g., Rhytidhysteron) genera, previously in the Mytilinidiaceae and Patellariaceae, respectively, transferred here to the Hysteriaceae, have also evolved at least twice within the subclass. As such, character states traditionally considered to represent synapomorphies among these fungi, whether they relate to spore septation or the ascomata, in fact, represent symplesiomorphies, and most likely have arisen multiple times through convergent evolutionary processes in response to common selective pressures.

8.
Stud Mycol ; 64: 85-102S5, 2009.
Article in English | MEDLINE | ID: mdl-20169024

ABSTRACT

Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz.Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceaes. str., Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic.

9.
Stud Mycol ; 64: 155-173S6, 2009.
Article in English | MEDLINE | ID: mdl-20169029

ABSTRACT

Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae,Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae,Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. Few marine species are reported from the Dothideomycetidae (e.g. Mycosphaerellaceae, Capnodiales), a group poorly studied at the molecular level. New marine lineages include the Testudinaceae and Manglicolaguatemalensis in the Jahnulales. Significantly, most marine Dothideomycetes are intertidal tropical species with only a few from temperate regions on salt marsh plants (Spartina species and Juncus roemerianus), and rarely totally submerged (e.g. Halotthia posidoniae and Pontoporeia biturbinata on the seagrasses Posidonia oceanica and Cymodocea nodosum). Specific attention is given to the adaptation of the Dothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity.

10.
Mol Ecol ; 16(8): 1701-11, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17402984

ABSTRACT

Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5-8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3-5 to fungi, 1-2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.


Subject(s)
Claviceps/classification , Phylogeny , Poaceae/microbiology , Animals , Base Sequence , Biological Evolution , Claviceps/genetics , Claviceps/physiology , Sequence Alignment , Symbiosis
11.
Mycorrhiza ; 15(2): 79-86, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15316884

ABSTRACT

Post-fire Pezizales fruit commonly in many forest types after fire. The objectives of this study were to determine which Pezizales appeared as sporocarps after a prescribed fire in the Blue Mountains of eastern Oregon, and whether species of Pezizales formed mycorrhizas on ponderosa pine, whether or not they were detected from sporocarps. Forty-two sporocarp collections in five genera (Anthracobia, Morchella, Peziza, Scutellinia, Tricharina) of post-fire Pezizales produced ten restriction fragment length polymorphism (RFLP) types. We found no root tips colonized by species of post-fire Pezizales fruiting at our site. However, 15% (6/39) of the RFLP types obtained from mycorrhizal roots within 32 soil cores were ascomycetes. Phylogenetic analyses of the 18S nuclear ribosomal DNA gene indicated that four of the six RFLP types clustered with two genera of the Pezizales, Wilcoxina and Geopora. Subsequent analyses indicated that two of these mycobionts were probably Wilcoxina rehmii, one Geopora cooperi, and one Geopora sp. The identities of two types were not successfully determined with PCR-based methods. Results contribute knowledge about the above- and below-ground ascomycete community in a ponderosa pine forest after a low intensity fire.


Subject(s)
Ascomycota/physiology , Mycorrhizae/physiology , Pinus/microbiology , Ascomycota/genetics , Fires , Mycorrhizae/genetics , Oregon , Polymorphism, Restriction Fragment Length
12.
Am J Bot ; 87(12): 1778-82, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11118413

ABSTRACT

We have sampled the mycorrhizal roots of 76 snow plants (Sarcodes sanguinea, Monotropoideae, Ericaceae) in two areas of the Sierra Nevada of California that are ∼180 km apart. To identify the fungal symbionts associated with these plants, we first analyzed restriction fragment length polymorphisms (RFLPs) of the internal transcribed spacer region (ITS) of the fungal nuclear ribosomal repeat. Fungal ITS-RFLPs were successfully produced from 57 of the 76 plants sampled, and all symbionts shared the same DNA fragment pattern. The morphology of S. sanguinea mycorrhizae was consistent with that expected from a Rhizopogon species in section Amylopogon. To confirm and refine this identification, a total of six fungal ITS sequences were determined from S. sanguinea mycorrhizae. These sequences were analyzed together with eight existing and eight newly determined ITS sequences from Rhizopogon section Amylopogon. The newly determined sequences include an ITS sequence from the fungal symbiont of pine drops (Pterospora andromedea, Monotropoideae, Ericaceae), a plant that was previously reported to be exclusively associated with the Rhizopogon subcaerulescens group. When these sequences were analyzed together, the Sarcodes symbionts grouped tightly with several collections of R. ellenae including the holotype, one collection of R. idahoensis, and one collection of R. semireticulatus. A different lineage comprised collections of R. subgelatinosus, R. subcaerulescens, another collection of R. semireticulatus, and the Pterospora symbiont. We conclude that S. sanguinea associates exclusively with a single species in the R. ellenae species complex throughout our sampling range. These results indicate a much higher level of specificity in S. sanguinea than was previously reported and confirm the emerging pattern that nonphotosynthetic, monotropoid plants generally associate very specifically with a narrow range of ectomycorrhizal fungi.

14.
Am J Bot ; 85(11): 1569-80, 1998 Nov.
Article in English | MEDLINE | ID: mdl-21680315

ABSTRACT

A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.

15.
Plant Dis ; 81(11): 1335, 1997 Nov.
Article in English | MEDLINE | ID: mdl-30861760

ABSTRACT

During July 1997, Epichloe typhina (Pers.:Fr.) Tul. in Tul. & C. Tul., the cause of choke disease, was found in four fields of an unnamed, experimental cultivar of orchardgrass (Dactylis glomerata L.) grown for seed near Halsey, OR. Disease occurrence in each of three fields was estimated by counting choked tillers in about 50 quadrats, 1 × 0.3 m, taken at 30-m intervals along three or four diagonal transects. In two fields, the disease was present in most quadrats (3% tillers infected). In the third field, choke was clustered in two areas, each with 1 to 8% infected tillers. A collection of E. typhina was deposited at the Oregon State University Mycological Herbarium (accession number 56,395). The disease had not been previously observed in commercial cultivars grown for seed in Oregon, with the exception of an infected tiller collected from an orchard-grass seed field during 1996. This is the first report of choke in Oregon on orchardgrass. Choke is an important disease in France, where it reduces seed yields of orchardgrass. Ten Oregon cultivars of orchardgrass were evaluated under field conditions in France in 1993 and 1994 for susceptibility to E. typhina. All cultivars were found susceptible to the disease; incidence of infected tillers ranged from 4 to 11%, with a mean of 7% (G. Sicard and R. E. Welty, unpublished). During 1996, several fragments of stroma of E. typhina were found among seed from a seed lot submitted to the Oregon State University Seed Lab for purity testing. This indicates that stroma may occur as a contaminant with seed, although it is not known if E. typhina would survive with the seed. E. typhina has not been reported to be seed-borne in orchardgrass.

16.
J Clin Microbiol ; 33(5): 1322-6, 1995 May.
Article in English | MEDLINE | ID: mdl-7615749

ABSTRACT

Because of their ability to display yeast-like growth forms in various environmental conditions, dematiaceous (melanized) hyphomycetes of the form-genera Exophiala, Rhinocladiella, and Wangiella have been informally termed "black yeasts." Cladistic analysis of 1,050 bp of the genes coding for small-subunit rRNA (SSU rDNA) supported a close relationship among species of these black yeasts with other dematiaceous hyphomycetes in the form-genera Fonsecaea, Phialophora, and Ramichloridium. The conventional categories of these fungi based on asexual states are not supported by phylogenetic analysis of SSU rDNA sequences. Isolates exhibiting annellidic modes of blastic conidiogenesis (e.g., Exophiala spp.) were not monophyletic and were placed as sister taxa to isolates that produce phialides or sympodulae. The results indicated very close relationships between isolates of Wangiella dermatitidis and Exophiala mansonii and between Rhinocladiella aquaspersa and Exophiala jeanselmei. This clade of dematiaceous hyphomycetes was a sister group to a clade comprising members of two orders of cleistothecial ascomycetes, Eurotiales and Onygenales. The etiological agents of chromoblastomycosis were found to be a closely related group (clade), while the agents of phaeohyphomycosis displayed a broader distribution on the SSU rDNA tree.


Subject(s)
Genes, Fungal , Mitosporic Fungi/genetics , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Ascomycota/classification , Ascomycota/genetics , Ascomycota/pathogenicity , Base Sequence , DNA Primers/genetics , DNA, Ribosomal/genetics , Humans , Mitosporic Fungi/classification , Mitosporic Fungi/pathogenicity , Molecular Sequence Data , Mycoses/microbiology , Phylogeny
17.
Biotechniques ; 12(2): 164, 166, 168-71, 1992 Feb.
Article in English | MEDLINE | ID: mdl-1616702

ABSTRACT

A modification of the asymmetric PCR method is described, which reliably facilitates sequencing of PCR-amplified DNA. This procedure produces single-stranded DNA fragments as long as two kilobases that are suitable for dideoxy DNA sequencing. First, a PCR for double-stranded DNA is preformed under optimal conditions (double-stranded PCR). Then, a 5-10-microliters fraction of the double-stranded PCR and a single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer is approximately 0.4 microM. Usually 15 to 25 cycles of single-stranded PCR are optimal to produce single-stranded DNA for four to eight sequencing reactions. The single-stranded DNA is purified by centrifugal ultrafiltration and used directly in dideoxy sequencing. This method was employed to produce high-quality single-stranded DNA templates from a variety of organisms for efficient DNA sequencing of PCR-amplified DNA.


Subject(s)
DNA, Single-Stranded/chemical synthesis , Nucleotide Mapping/methods , Polymerase Chain Reaction/methods , Animals , Base Sequence , DNA/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...