Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 10(1): 1820, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015459

ABSTRACT

Tetradymite-structured chalcogenides such as bismuth telluride (Bi2Te3) are of significant interest for thermoelectric energy conversion and as topological insulators. Dislocations play a critical role during synthesis and processing of such materials and can strongly affect their functional properties. The dislocations between quintuple layers present special interest since their core structure is controlled by the van der Waals interactions between the layers. In this work, using atomic-resolution electron microscopy, we resolve the basal dislocation core structure in Bi2Te3, quantifying the disregistry of the atomic planes across the core. We show that, despite the existence of a stable stacking fault in the basal plane gamma surface, the dislocation core spreading is mainly due to the weak bonding between the layers, which leads to a small energy penalty for layer sliding parallel to the van der Waals gap. Calculations within a semidiscrete variational Peierls-Nabarro model informed by first-principles calculations support our experimental findings.

2.
Phys Rev Lett ; 87(24): 246405, 2001 Dec 10.
Article in English | MEDLINE | ID: mdl-11736524

ABSTRACT

We report ab initio calculations of quasiparticle lifetimes in graphite, as determined from the imaginary part of the self-energy operator within the GW approximation. The inverse lifetime in the energy range from 0.5 to 3.5 eV above the Fermi level presents significant deviations from the quadratic behavior naively expected from Fermi liquid theory. The deviations are explained in terms of the unique features of the band structure of this material. We also discuss the experimental results from different groups and make some predictions for future experiments.

SELECTION OF CITATIONS
SEARCH DETAIL