Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4041, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740794

ABSTRACT

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Subject(s)
Azotobacter vinelandii , Molybdoferredoxin , Nitrogenase , Selenium , Sulfur , Electron Spin Resonance Spectroscopy/methods , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Nitrogenase/chemistry , Molybdoferredoxin/metabolism , Molybdoferredoxin/chemistry , Selenium/metabolism , Selenium/chemistry , Sulfur/metabolism , Sulfur/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
2.
Nat Protoc ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575747

ABSTRACT

Single-particle cryo-electron microscopy (cryoEM) provides an attractive avenue for advancing our atomic resolution understanding of materials, molecules and living systems. However, the vast majority of published cryoEM methodologies focus on the characterization of aerobically purified samples. Air-sensitive enzymes and microorganisms represent important yet understudied systems in structural biology. We have recently demonstrated the success of an anaerobic single-particle cryoEM workflow applied to the air-sensitive nitrogenase enzymes. In this protocol, we detail the use of Schlenk lines and anaerobic chambers to prepare samples, including a protein tag for monitoring sample exposure to oxygen in air. We describe how to use a plunge freezing apparatus inside of a soft-sided vinyl chamber of the type we routinely use for anaerobic biochemistry and crystallography of oxygen-sensitive proteins. Manual control of the airlock allows for introduction of liquid cryogens into the tent. A custom vacuum port provides slow, continuous evacuation of the tent atmosphere to avoid accumulation of flammable vapors within the enclosed chamber. These methods allowed us to obtain high-resolution structures of both nitrogenase proteins using single-particle cryoEM. The procedures involved can be generally subdivided into a 4 d anaerobic sample generation procedure, and a 1 d anaerobic cryoEM sample preparation step, followed by conventional cryoEM imaging and processing steps. As nitrogen is a substrate for nitrogenase, the Schlenk lines and anaerobic chambers described in this procedure are operated under an argon atmosphere; however, the system and these procedures are compatible with other controlled gas environments.

3.
Nat Chem ; 13(8): 758-765, 2021 08.
Article in English | MEDLINE | ID: mdl-34183818

ABSTRACT

The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.


Subject(s)
Arabidopsis Proteins , Coenzymes , Molybdenum , Oxidoreductases , Pteridines , Adenosine Monophosphate/analogs & derivatives , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Coenzymes/chemistry , Crystallography, X-Ray , Models, Chemical , Molybdenum/chemistry , Molybdenum Cofactors , Oxidoreductases/chemistry , Pteridines/chemistry
4.
Angew Chem Int Ed Engl ; 60(11): 5704-5707, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33320413

ABSTRACT

As an approach towards unraveling the nitrogenase mechanism, we have studied the binding of CO to the active-site FeMo-cofactor. CO is not only an inhibitor of nitrogenase, but it is also a substrate, undergoing reduction to hydrocarbons (Fischer-Tropsch-type chemistry). The C-C bond forming capabilities of nitrogenase suggest that multiple CO or CO-derived ligands bind to the active site. Herein, we report a crystal structure with two CO ligands coordinated to the FeMo-cofactor of the molybdenum nitrogenase at 1.33 Šresolution. In addition to the previously observed bridging CO ligand between Fe2 and Fe6 of the FeMo-cofactor, a new ligand binding mode is revealed through a second CO ligand coordinated terminally to Fe6. While the relevance of this state to nitrogenase-catalyzed reactions remains to be established, it highlights the privileged roles for Fe2 and Fe6 in ligand binding, with multiple coordination modes available depending on the ligand and reaction conditions.


Subject(s)
Carbon Monoxide/metabolism , Nitrogenase/metabolism , Binding Sites , Carbon Monoxide/chemistry , Ligands , Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , Nitrogenase/chemistry
5.
Angew Chem Int Ed Engl ; 58(12): 3894-3897, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30698901

ABSTRACT

The nitrogenase iron protein (Fe-protein) contains an unusual [4Fe:4S] iron-sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13-Å resolution structure for the ADP bound Fe-protein, the highest resolution Fe-protein structure presently determined. In the dithionite-reduced [4Fe:4S]1+ state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe2+ pair. We propose that ATP binding by the Fe-protein promotes an internal redox rearrangement such that the solvent-exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron-protein. In the [4Fe:4S]0 and [4Fe:4S]2+ states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe2+ and valence delocalized Fe2.5+ , respectively.


Subject(s)
Iron/chemistry , Oxidoreductases/metabolism , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Biocatalysis , Electron Spin Resonance Spectroscopy , Hydrogen Bonding , Ions/chemistry , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Molybdenum/chemistry , Oxidation-Reduction , Oxidoreductases/chemistry
6.
Methods Mol Biol ; 1876: 155-165, 2019.
Article in English | MEDLINE | ID: mdl-30317480

ABSTRACT

Nitrogenase is the only known enzymatic system capable of reducing atmospheric dinitrogen to ammonia. This unique reaction requires tightly choreographed interactions between the nitrogenase component proteins, the molybdenum-iron (MoFe)- and iron (Fe)-proteins, as well as regulation of electron transfer between multiple metal centers that are only found in these components. Several decades of research beginning in the 1950s yielded substantial information of how nitrogenase manages the task of N2 fixation. However, key mechanistic steps in this highly oxygen-sensitive and ATP-intensive reaction have only recently been identified at an atomic level. A critical part in any mechanistic elucidation is the necessity to connect spectroscopic and functional properties of the component proteins to the detailed three-dimensional structures. Structural information derived from X-ray diffraction (XRD) methods has provided detailed atomic insights into the enzyme system and, in particular, its active site FeMo-cofactor. The following chapter outlines the general protocols for the crystallization of Azotobacter vinelandii (Av) nitrogenase component proteins, with a special emphasis on different applications, such as high-resolution XRD, single-crystal spectroscopy, and the structural characterization of bound inhibitors.


Subject(s)
Azotobacter vinelandii/enzymology , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Azotobacter vinelandii/chemistry , Catalytic Domain , Crystallography, X-Ray , Electron Transport , Iron/chemistry , Models, Molecular , Nitrogen Fixation
8.
J Am Chem Soc ; 139(31): 10856-10862, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28692802

ABSTRACT

Protonated states of the nitrogenase active site are mechanistically significant since substrate reduction is invariably accompanied by proton uptake. We report the low pH characterization by X-ray crystallography and EPR spectroscopy of the nitrogenase molybdenum iron (MoFe) proteins from two phylogenetically distinct nitrogenases (Azotobacter vinelandii, Av, and Clostridium pasteurianum, Cp) at pHs between 4.5 and 8. X-ray data at pHs of 4.5-6 reveal the repositioning of side chains along one side of the FeMo-cofactor, and the corresponding EPR data shows a new S = 3/2 spin system with spectral features similar to a state previously observed during catalytic turnover. The structural changes suggest that FeMo-cofactor belt sulfurs S3A or S5A are potential protonation sites. Notably, the observed structural and electronic low pH changes are correlated and reversible. The detailed structural rearrangements differ between the two MoFe proteins, which may reflect differences in potential protonation sites at the active site among nitrogenase species. These observations emphasize the benefits of investigating multiple nitrogenase species. Our experimental data suggest that reversible protonation of the resting state is likely occurring, and we term this state "E0H+", following the Lowe-Thorneley naming scheme.


Subject(s)
Nitrogenase/metabolism , Protons , Catalytic Domain , Crystallography, X-Ray , Hydrogen-Ion Concentration , Nitrogenase/chemistry
9.
Protein Sci ; 26(10): 1984-1993, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28710816

ABSTRACT

Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry corresponding to reduction potentials of -483 ± 1 mV and -187 ± 9 mV (vs. NHE) in 50 mM potassium phosphate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant-modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X-ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 Å resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized. Docking studies indicate that a common binding site surrounding the Fe-protein [4Fe:4S] cluster mediates complex formation with the redox partners Mo-Fe protein, ferredoxin I, and flavodoxin II. This model supports a mechanistic hypothesis that electron transfer reactions between the Fe-protein and its redox partners are mutually exclusive.


Subject(s)
Azotobacter vinelandii/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavodoxin/chemistry , Flavodoxin/metabolism , Azotobacter vinelandii/metabolism , Azotobacter vinelandii/physiology , Crystallography, X-Ray , Electrochemistry , Hydrogen-Ion Concentration , Iron/chemistry , Iron/metabolism , Models, Molecular , Nitrogenase , Protein Conformation
10.
J Biol Inorg Chem ; 22(1): 161-168, 2017 01.
Article in English | MEDLINE | ID: mdl-27928630

ABSTRACT

The alternative, vanadium-dependent nitrogenase is employed by Azotobacter vinelandii for the fixation of atmospheric N2 under conditions of molybdenum starvation. While overall similar in architecture and functionality to the common Mo-nitrogenase, the V-dependent enzyme exhibits a series of unique features that on one hand are of high interest for biotechnological applications. As its catalytic properties differ from Mo-nitrogenase, it may on the other hand also provide invaluable clues regarding the molecular mechanism of biological nitrogen fixation that remains scarcely understood to date. Earlier studies on vanadium nitrogenase were almost exclusively based on a ΔnifHDK strain of A. vinelandii, later also in a version with a hexahistidine affinity tag on the enzyme. As structural analyses remained unsuccessful with such preparations we have developed protocols to isolate unmodified vanadium nitrogenase from molybdenum-depleted, actively nitrogen-fixing A. vinelandii wild-type cells. The procedure provides pure protein at high yields whose spectroscopic properties strongly resemble data presented earlier. Analytical size-exclusion chromatography shows this preparation to be a VnfD2K2G2 heterohexamer.


Subject(s)
Azotobacter vinelandii/enzymology , Molybdenum/pharmacology , Nitrogenase/biosynthesis , Nitrogenase/isolation & purification , Azotobacter vinelandii/drug effects , Azotobacter vinelandii/growth & development , Azotobacter vinelandii/metabolism , Biocatalysis , Culture Media/chemistry , Dose-Response Relationship, Drug , Nitrogenase/metabolism
11.
Nat Commun ; 7: 10902, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26973151

ABSTRACT

The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S=3/2 state the common iron oxidation state assignments must be reconsidered. By a spatially resolved refinement of the anomalous scattering contributions of the 7 Fe atoms of FeMoco, we conclude that three irons (Fe1/3/7) are more reduced than the other four (Fe2/4/5/6). Our data are in agreement with the recently revised oxidation state assignment for the molybdenum ion, providing the first spatially resolved picture of the resting-state electron distribution within FeMoco. This might provide the long-sought experimental basis for a generally accepted theoretical description of the cluster that is in line with available spectroscopic and functional data.


Subject(s)
Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Azotobacter vinelandii , Crystallization , Crystallography, X-Ray , Electrons , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Protein Conformation
12.
Elife ; 4: e11620, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26673079

ABSTRACT

Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis.


Subject(s)
Azotobacter vinelandii/enzymology , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Selenium/metabolism , Azotobacter vinelandii/chemistry , Catalytic Domain , Crystallography, X-Ray , Cyanates/metabolism , Models, Molecular , Molybdoferredoxin/chemistry , Protein Conformation , Selenium Compounds/metabolism
13.
Biochem J ; 468(3): 475-84, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25849365

ABSTRACT

Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue ß2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site.


Subject(s)
Alicyclobacillus/enzymology , Azotobacter vinelandii/enzymology , Bacterial Proteins/metabolism , Coenzymes/metabolism , Desulfurococcaceae/enzymology , Ketol-Acid Reductoisomerase/metabolism , Models, Molecular , Adenosine Diphosphate Ribose/analogs & derivatives , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Coenzymes/chemistry , Crystallography, X-Ray , Ketol-Acid Reductoisomerase/chemistry , Ketol-Acid Reductoisomerase/genetics , Magnesium/chemistry , Magnesium/metabolism , Molecular Conformation , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , NAD/chemistry , NAD/metabolism , NADP/chemistry , NADP/metabolism , Phosphorylation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment
14.
Science ; 345(6204): 1620-3, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25258081

ABSTRACT

The mechanism of nitrogenase remains enigmatic, with a major unresolved issue concerning how inhibitors and substrates bind to the active site. We report a crystal structure of carbon monoxide (CO)-inhibited nitrogenase molybdenum-iron (MoFe)-protein at 1.50 angstrom resolution, which reveals a CO molecule bridging Fe2 and Fe6 of the FeMo-cofactor. The µ2 binding geometry is achieved by replacing a belt-sulfur atom (S2B) and highlights the generation of a reactive iron species uncovered by the displacement of sulfur. The CO inhibition is fully reversible as established by regain of enzyme activity and reappearance of S2B in the 1.43 angstrom resolution structure of the reactivated enzyme. The substantial and reversible reorganization of the FeMo-cofactor accompanying CO binding was unanticipated and provides insights into a catalytically competent state of nitrogenase.


Subject(s)
Carbon Monoxide/chemistry , Molybdoferredoxin/chemistry , Nitrogen Fixation , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Ligands , Molybdoferredoxin/antagonists & inhibitors , Protein Binding , Sulfur/chemistry
15.
Extremophiles ; 18(4): 641-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24794033

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (Hpd, EC 1.13.11.27) catalyzes the conversion of 4-hydroxyphenylpyruvate into homogentisate in the second step of oxidative tyrosine catabolism. This pathway is known from bacteria and eukaryotes, but so far no archaeal Hpd has been described. Here, we report the biochemical characterization of an Hpd from the extremophilic archaeon Picrophilus torridus (Pt_Hpd), together with its three-dimensional structure at a resolution of 2.6 Å. Two pH optima were observed at 50 °C: pH 4.0 (close to native conditions) and pH 7.0. The enzyme showed only moderate thermostability and was inactivated with a half-life of ~1.5 h even under optimal reaction conditions. At the ideal physiological growth conditions of P. torridus, Pt_Hpd was inactive after 1 h, showing that the enzyme is protected in vivo from denaturation and/or is only partially adapted to the harsh environmental conditions in the cytosol of P. torridus. The influence of different additives on the activity was investigated. Pt_Hpd exhibited a turnover number k(cat) of 9.9 ± 0.6 s(-1) and a substrate binding affinity K(m) of 142 ± 23 µM. In addition, substrate inhibition with a binding affinity K(i) of 1.9 ± 0.3 mM was observed. Pt_Hpd is compared with isoenzymes from other species and the putative bacterial origin of the gene is discussed.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Archaeal Proteins/chemistry , Thermoplasmales/enzymology , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Cloning, Molecular , Kinetics , Molecular Sequence Data , Phylogeny , Protein Conformation
16.
Biochemistry ; 53(2): 333-43, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24392967

ABSTRACT

Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725-13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis.


Subject(s)
Molybdoferredoxin/antagonists & inhibitors , Molybdoferredoxin/metabolism , Nitrogenase/antagonists & inhibitors , Nitrogenase/metabolism , Adenosine Triphosphate/metabolism , Azotobacter vinelandii/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Time Factors
17.
Angew Chem Int Ed Engl ; 52(40): 10529-32, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23963815

ABSTRACT

Another iron in the fire: X-ray anomalous diffraction studies on the nitrogenase MoFe protein show the presence of a mononuclear iron site, designated as Fe16, which was previously identified as either Ca(2+) or Mg(2+). The position of the absorption edge indicates that this site is in the oxidation state +2. The high sequence conservation of the residues coordinated to Fe16 emphasizes the potential importance of the site in nitrogenase.


Subject(s)
Iron/chemistry , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Crystallography, X-Ray , Iron/metabolism , Models, Molecular , Molybdoferredoxin/metabolism , Nitrogen Fixation , Nitrogenase/metabolism
18.
Angew Chem Int Ed Engl ; 52(38): 10116-9, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23929797

ABSTRACT

The catalytic center of nitrogenase, the [Mo:7Fe:9S:C]:homocitrate FeMo cofactor, is a S=3/2 system with a rhombic magnetic g tensor. Single-crystal EPR spectroscopy in combination with X-ray diffraction were used to determine the relative orientation of the g tensor with respect to the cluster structure. The protein environment influences the electronic structure of the FeMo cofactor, dictating preferred orientations of possible functional relevance.


Subject(s)
Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Electron Spin Resonance Spectroscopy/methods , Magnetic Phenomena , Nitrogen Fixation , Nitrogenase/analysis , Oxidation-Reduction
19.
Biochemistry ; 51(13): 2747-56, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22417533

ABSTRACT

The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS(-2) as an electron donor. The observed K(M) was 38.5 ± 3.7 µM H(2)O(2) and v(max) was 0.78 ± 0.03 µmol of H(2)O(2)·min(-1)·mg(-1), resulting in a turnover number k(cat) = 0.46 · s(-1). In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.


Subject(s)
Cytochrome-c Peroxidase/metabolism , Geobacter/enzymology , Base Sequence , Biocatalysis , Cytochrome-c Peroxidase/chemistry , Cytochrome-c Peroxidase/genetics , DNA Primers , Electrochemistry , Models, Molecular , Mutagenesis, Site-Directed , Oxidation-Reduction
20.
Science ; 334(6058): 940, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22096190

ABSTRACT

The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species.


Subject(s)
Azotobacter vinelandii/chemistry , Carbon/chemistry , Molybdoferredoxin/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Structure , Nitrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...