Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 376(6588): 80-85, 2022 04.
Article in English | MEDLINE | ID: mdl-35357913

ABSTRACT

Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.


Subject(s)
Brain , Eutheria , Extinction, Biological , Animals , Body Size , Brain/anatomy & histology , Brain/growth & development , Eutheria/anatomy & histology , Eutheria/classification , Eutheria/growth & development , Female , Fossils , Organ Size , Phylogeny
2.
Science ; 341(6146): 613, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23929968

ABSTRACT

Tree-building with diverse data maximizes explanatory power. Application of molecular clock models to ancient speciation events risks a bias against detection of fast radiations subsequent to the Cretaceous-Paleogene (K-Pg) event. Contrary to Springer et al., post-K-Pg placental diversification does not require "virus-like" substitution rates. Even constraining clade ages to their model, the explosive model best explains placental evolution.


Subject(s)
Biological Evolution , Fossils , Mammals , Phylogeny , Animals , Female , Pregnancy
3.
Science ; 339(6120): 662-7, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23393258

ABSTRACT

To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.


Subject(s)
Biological Evolution , Fossils , Mammals , Phylogeny , Animals , Base Sequence , Dentition , Ecosystem , Extinction, Biological , Female , Mammals/anatomy & histology , Mammals/classification , Mammals/genetics , Paleodontology , Phylogeography , Placenta , Pregnancy , Sequence Alignment , Time , Xenarthra/anatomy & histology , Xenarthra/classification , Xenarthra/genetics
4.
PLoS One ; 7(11): e50485, 2012.
Article in English | MEDLINE | ID: mdl-23209753

ABSTRACT

Authoritative anatomical references depict domestic dogs and cats as having a malleus with a short rostral (anterior) process that is connected via a ligament to the ectotympanic of the auditory bulla. Similar mallei have been reported for representatives of each of the 15 extant families of Carnivora, the placental order containing dogs and cats. This morphology is in contrast to a malleus with a long rostral process anchored to the ectotympanic that is considered to be primitive for mammals. Our reexamination of extant carnivorans found representatives from 12 families that possess an elongate rostral process anchored to the ectotympanic. Consequently, the malleus also is a component of the bulla. In a subset of our carnivoran sample, we confirmed that the elongate rostral process on the ectotympanic is continuous with the rest of the malleus through a thin osseous lamina. This morphology is reconstructed as primitive for Carnivora. Prior inaccurate descriptions of the taxa in our sample having mallei continuous with the bulla were based on damaged mallei. In addition to coupling to the ectotympanic, the rostral process of the malleus was found to have a hook-like process that fits in a facet on the skull base in representatives from seven families (felids, nandiniids, viverrids, canids, ursids, procyonids, and mustelids); its occurrence in the remaining families could not be ascertained. This feature is named herein the mallear hook and is likewise reconstructed to be primitive for Carnivora. We also investigated mallei in one additional placental order reported to have mallei not connected to the ectotympanic, Pholidota (pangolins), the extant sister group of Carnivora. We found pholidotans to also have anchored mallei with long rostral processes, but lacking mallear hooks. In light of our results, other mammals previously reported to have short rostral processes should be reexamined.


Subject(s)
Carnivora/classification , Mammals/classification , Animals , Carnivora/anatomy & histology , Malleus/anatomy & histology , Mammals/anatomy & histology , Phylogeny
5.
PLoS One ; 4(9): e7062, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19774069

ABSTRACT

BACKGROUND: Integration of diverse data (molecules, fossils) provides the most robust test of the phylogeny of cetaceans. Positioning key fossils is critical for reconstructing the character change from life on land to life in the water. METHODOLOGY/PRINCIPAL FINDINGS: We reexamine relationships of critical extinct taxa that impact our understanding of the origin of Cetacea. We do this in the context of the largest total evidence analysis of morphological and molecular information for Artiodactyla (661 phenotypic characters and 46,587 molecular characters, coded for 33 extant and 48 extinct taxa). We score morphological data for Carnivoramorpha, Creodonta, Lipotyphla, and the raoellid artiodactylan Indohyus and concentrate on determining which fossils are positioned along stem lineages to major artiodactylan crown clades. Shortest trees place Cetacea within Artiodactyla and close to Indohyus, with Mesonychia outside of Artiodactyla. The relationships of Mesonychia and Indohyus are highly unstable, however--in trees only two steps longer than minimum length, Mesonychia falls inside Artiodactyla and displaces Indohyus from a position close to Cetacea. Trees based only on data that fossilize continue to show the classic arrangement of relationships within Artiodactyla with Cetacea grouping outside the clade, a signal incongruent with the molecular data that dominate the total evidence result. CONCLUSIONS/SIGNIFICANCE: Integration of new fossil material of Indohyus impacts placement of another extinct clade Mesonychia, pushing it much farther down the tree. The phylogenetic position of Indohyus suggests that the cetacean stem lineage included herbivorous and carnivorous aquatic species. We also conclude that extinct members of Cetancodonta (whales+hippopotamids) shared a derived ability to hear underwater sounds, even though several cetancodontans lack a pachyostotic auditory bulla. We revise the taxonomy of living and extinct artiodactylans and propose explicit node and stem-based definitions for the ingroup.


Subject(s)
Biological Evolution , Cetacea/classification , Cetacea/physiology , Dolphins/physiology , Fossils , Mammals/classification , Mammals/physiology , Porpoises/physiology , Whales/physiology , Animals , Extinction, Biological , Phenotype , Phylogeny
6.
Mol Phylogenet Evol ; 53(3): 891-906, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19699809

ABSTRACT

Cetaceans are remarkable among mammals for their numerous adaptations to an entirely aquatic existence, yet many aspects of their phylogeny remain unresolved. Here we merged 37 new sequences from the nuclear genes RAG1 and PRM1 with most published molecular data for the group (45 nuclear loci, transposons, mitochondrial genomes), and generated a supermatrix consisting of 42,335 characters. The great majority of these data have never been combined. Model-based analyses of the supermatrix produced a solid, consistent phylogenetic hypothesis for 87 cetacean species. Bayesian analyses corroborated odontocete (toothed whale) monophyly, stabilized basal odontocete relationships, and completely resolved branching events within Mysticeti (baleen whales) as well as the problematic speciose clade Delphinidae (oceanic dolphins). Only limited conflicts relative to maximum likelihood results were recorded, and discrepancies found in parsimony trees were very weakly supported. We utilized the Bayesian supermatrix tree to estimate divergence dates among lineages using relaxed-clock methods. Divergence estimates revealed rapid branching of basal odontocete lineages near the Eocene-Oligocene boundary, the antiquity of river dolphin lineages, a Late Miocene radiation of balaenopteroid mysticetes, and a recent rapid radiation of Delphinidae beginning approximately 10 million years ago. Our comprehensive, time-calibrated tree provides a powerful evolutionary tool for broad-scale comparative studies of Cetacea.


Subject(s)
Cetacea/genetics , Evolution, Molecular , Phylogeny , Animals , Bayes Theorem , Cetacea/classification , DNA Transposable Elements , DNA, Mitochondrial/genetics , Genes, RAG-1 , Genome, Mitochondrial , Models, Genetic , Sequence Alignment , Sequence Analysis, DNA
7.
J Morphol ; 270(7): 856-79, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19206153

ABSTRACT

The furcula is a structure formed by the midline fusion of the clavicles. This is the element which is unique to theropods and is important for understanding the link between birds and other theropods. New specimens from basal theropods suggest that the furcula appeared very early in theropod history. We review furcula development, function, and morphology, as well as the anatomical terminology applied to it. Furcular morphology is highly variable in crown-group avians but is rather conserved among nonavian theropods. Here we review, or describe for the first time, the furculae in many nonavian theropods. Furculae occur in nearly all major clades of theropods, as shown by new theropod specimens from the Early Cretaceous of China and a close inspection of previously collected specimens. Informative phylogenetic characters pertaining to the furcula occur throughout Theropoda, though care should betake to consider taphonomic effects when describing furcular morphology.


Subject(s)
Birds/anatomy & histology , Clavicle/anatomy & histology , Dinosaurs/anatomy & histology , Animals , Biological Evolution , Birds/growth & development , Clavicle/growth & development , Dinosaurs/growth & development , Fossils , Paleontology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...