Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Host Microbe ; 27(4): 659-670.e5, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32101703

ABSTRACT

Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration.


Subject(s)
Bile Acids and Salts/metabolism , Colonic Pouches/microbiology , Dysbiosis/complications , Feces/microbiology , Receptors, G-Protein-Coupled/metabolism , Adenomatous Polyposis Coli/microbiology , Animals , Bile Acids and Salts/pharmacology , Colitis/etiology , Colitis/microbiology , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/etiology , Intestines/drug effects , Intestines/pathology , Metagenome , Mice , Microbiota , Receptors, G-Protein-Coupled/drug effects , Ruminococcus/isolation & purification , Transcriptome
2.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G853-G861, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31604034

ABSTRACT

Intestinal functions, including motility and secretion, are locally controlled by enteric neural networks housed within the wall of the gut. The fidelity of these functions depends on the precision of intercellular signaling among cellular elements, including enteric neurons, epithelial cells, immune cells, and glia, all of which are vulnerable to disruptive influences during inflammatory events. This review article describes current knowledge regarding inflammation-induced neuroplasticity along key elements of enteric neural circuits, what is known about the causes of these changes, and possible therapeutic targets for protecting and/or repairing the integrity of intrinsic enteric neurotransmission. Changes that have been detected in response to inflammation include increased epithelial serotonin availability, hyperexcitability of intrinsic primary afferent neurons, facilitation of synaptic activity among enteric neurons, and attenuated purinergic neuromuscular transmission. Dysfunctional propulsive motility has been detected in models of colitis, where causes include the changes described above, and in models of multiple sclerosis and other autoimmune conditions, where autoantibodies are thought to mediate dysmotility. Other cells implicated in inflammation-induced neuroplasticity include muscularis macrophages and enteric glia. Targeted treatments that are discussed include 5-hydroxytryptamine receptor 4 agonists, cyclooxygenase inhibitors, antioxidants, B cell depletion therapy, and activation of anti-inflammatory pathways.


Subject(s)
Cell Communication/physiology , Enteric Nervous System , Gastrointestinal Motility/immunology , Inflammation , Neuronal Plasticity/immunology , Animals , Enteric Nervous System/immunology , Enteric Nervous System/physiopathology , Humans , Inflammation/immunology , Inflammation/physiopathology , Inflammation/therapy , Nervous System Autoimmune Disease, Experimental
SELECTION OF CITATIONS
SEARCH DETAIL
...