Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 35(3): 723-731, 2022 06.
Article in English | MEDLINE | ID: mdl-35194736

ABSTRACT

There is consistent demand for clinical exposure from students interested in radiology; however, the COVID-19 pandemic resulted in fewer available options and limited student access to radiology departments. Additionally, there is increased demand for radiologists to manage more complex quantification in reports on patients enrolled in clinical trials. We present an online educational curriculum that addresses both of these gaps by virtually immersing students (radiology preprocessors, or RPs) into radiologists' workflows where they identify and measure target lesions in advance of radiologists, streamlining report quantification. RPs switched to remote work at the beginning of the COVID-19 pandemic in our National Institutes of Health (NIH). We accommodated them by transitioning our curriculum on cross-sectional anatomy and advanced PACS tools to a publicly available online curriculum. We describe collaborations between multiple academic research centers and industry through contributions of academic content to this curriculum. Further, we describe how we objectively assess educational effectiveness with cross-sectional anatomical quizzes and decreasing RP miss rates as they gain experience. Our RP curriculum generated significant interest evidenced by a dozen academic and research institutes providing online presentations including radiology modality basics and quantification in clinical trials. We report a decrease in RP miss rate percentage, including one virtual RP over a period of 1 year. Results reflect training effectiveness through decreased discrepancies with radiologist reports and improved tumor identification over time. We present our RP curriculum and multicenter experience as a pilot experience in a clinical trial research setting. Students are able to obtain useful clinical radiology experience in a virtual learning environment by immersing themselves into a clinical radiologist's workflow. At the same time, they help radiologists improve patient care with more valuable quantitative reports, previously shown to improve radiologist efficiency. Students identify and measure lesions in clinical trials before radiologists, and then review their reports for self-evaluation based on included measurements from the radiologists. We consider our virtual approach as a supplement to student education while providing a model for how artificial intelligence will improve patient care with more consistent quantification while improving radiologist efficiency.


Subject(s)
COVID-19 , Radiology , Artificial Intelligence , Curriculum , Humans , Pandemics , Radiology/education , Students , Workflow
2.
Acad Radiol ; 27(1): 96-105, 2020 01.
Article in English | MEDLINE | ID: mdl-31818390

ABSTRACT

RATIONALE AND OBJECTIVES: Our primary aim was to improve radiology reports by increasing concordance of target lesion measurements with oncology records using radiology preprocessors (RP). Faster notification of incidental actionable findings to referring clinicians and clinical radiologist exam interpretation time savings with RPs quantifying tumor burden were also assessed. MATERIALS AND METHODS: In this prospective quality improvement initiative, RPs annotated lesions before radiologist interpretation of CT exams. Clinical radiologists then hyperlinked approved measurements into interactive reports during interpretations. RPs evaluated concordance with our tumor measurement radiologist, the determinant of tumor burden. Actionable finding detection and notification times were also deduced. Clinical radiologist interpretation times were calculated from established average CT chest, abdomen, and pelvis interpretation times. RESULTS: RPs assessed 1287 body CT exams with 812 follow-up CT chest, abdomen, and pelvis studies; 95 (11.7%) of which had 241 verified target lesions. There was improved concordance (67.8% vs. 22.5%) of target lesion measurements. RPs detected 93.1% incidental actionable findings with faster clinician notification by a median time of 1 hour (range: 15 minutes-16 hours). Radiologist exam interpretation times decreased by 37%. CONCLUSIONS: This workflow resulted in three-fold improved target lesion measurement concordance with oncology records, earlier detection and faster notification of incidental actionable findings to referring clinicians, and decreased exam interpretation times for clinical radiologists. These findings demonstrate potential roles for automation (such as AI) to improve report value, worklist prioritization, and patient care.


Subject(s)
Artificial Intelligence , Radiology , Workflow , Humans , Prospective Studies , Radiologists
SELECTION OF CITATIONS
SEARCH DETAIL
...