Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5628, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379832

ABSTRACT

Non-destructive evaluation of plastically deformed metals, particularly diffraction line profile analysis (DLPA), is valuable both to estimate dislocation densities and arrangements and to validate microstructure-aware constitutive models. To date, the interpretation of whole line diffraction profiles relies on the use of semi-analytical models such as the extended convolutional multiple whole profile (eCMWP) method. This study introduces and validates two data-driven DLPA models to extract dislocation densities from experimentally gathered whole line diffraction profiles. Using two distinct virtual diffraction models accounting for both strain and instrument induced broadening, a database of virtual diffraction whole line profiles of Ta single crystals is generated using discrete dislocation dynamics. The databases are mined to create Gaussian process regression-based surrogate models, allowing dislocation densities to be extracted from experimental profiles. The method is validated against 11 experimentally gathered whole line diffraction profiles from plastically deformed Ta polycrystals. The newly proposed model predicts dislocation densities consistent with estimates from eCMWP. Advantageously, this data driven LPA model can distinguish broadening originating from the instrument and from the dislocation content even at low dislocation densities. Finally, the data-driven model is used to explore the effect of heterogeneous dislocation densities in microstructures containing grains, which may lead to more accurate data-driven predictions of dislocation density in plastically deformed polycrystals.

2.
J Mech Behav Biomed Mater ; 118: 104423, 2021 06.
Article in English | MEDLINE | ID: mdl-33752092

ABSTRACT

An analytical model is developed to predict shockwave propagation and attenuation in hydrogels by combining the classical method of shock characteristics and a solution for the shock front structure. To guide the development of the model, molecular dynamics (MD) simulations are performed. Specifically, a one-dimensional shock pulse in poly(ethylene glycol) diacrylate (PEGDA) hydrogels is simulated with the nonequilibrium MD method. The role of polymer concentration on the shock response is evaluated by constructing hydrogels with 20, 35, and 50 wt% PEGDA concentrations in an idealized crosslinked network. Steady-state pressure-density and shock-particle velocity relationships are established using the Murnaghan equation of state. Shock front structure is characterized by a power-law equation that relates the shock front thickness with shock pressure. These results are used as critical input for the shock propagation and attenuation model. The model is then evaluated via comparison with the classical method of characteristics. It shows significant improvement in accuracy and successfully captures salient features of shockwave attenuation, including the shock pressure amplitude, the velocities of the shock and release waves, and the attenuation timeline. Hydrogels with higher polymer concentrations exhibit a shorter attenuation time at all particle velocities studied. This behavior is attributed to differences in bulk properties and shock front structure in hydrogels with different polymer/water concentrations.


Subject(s)
Biocompatible Materials , Hydrogels , Molecular Dynamics Simulation , Polyethylene Glycols , Water
3.
J Phys Chem B ; 124(10): 2029-2039, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32040323

ABSTRACT

The high strain rate behavior of nonideal poly(ethylene glycol) diacrylate hydrogels under uniaxial tension and transient-state shear deformations is investigated using molecular dynamics (MD) simulations. This work specifically focuses on the influence of first-order loop defects, including their effect on topological evolutions. Two approaches are proposed to systematically introduce first-order loops, allowing separate and controllable investigations of effective cross-link functionality and cross-link density. MD simulations confirm that first-order loop defects are elastically inactive, but the topological disruptions caused by the presence of loop defects influence mechanical behavior. For decreasing effective cross-link functionality but constant cross-link density, a weaker tensile stress-strain response and decreasing shear-thickening behavior are observed. This is due to nonaffine translation of cross-link junction positions during deformation. Hydrogels with lower cross-link density but constant effective functionality show a stronger stress-strain response and an earlier transition between entropic and enthalpic deformation regimes. This behavior is correlated to changes in mesh size caused by the introduction of loops within an elastically active network. However, the resulting range of cross-link densities is not sufficient to cause measurable changes in shear-thickening behavior. To conclude, reductions in effective cross-link functionality are more important to high strain rate behavior than reductions in cross-link density.

4.
J Mech Behav Biomed Mater ; 90: 30-39, 2019 02.
Article in English | MEDLINE | ID: mdl-30342277

ABSTRACT

Shockwave propagation in polyethylene glycol diacrylate (PEGDA) hydrogels is simulated for the first time using nonequilibrium molecular dynamics simulations. PEGDA hydrogel models are built using the "perfect network" approach such that each crosslink junction is comprised of six chain connections. The influence of PEGDA concentration (20-70 wt%) on shock behavior is investigated for a range of particle velocities (200-1000 m/s). In agreement with reported experimental results in the literature on gels with similar densities, shock velocity and pressure in PEGDA hydrogels are found to increase with polymer concentration, within a range bounded by pure water and pure polymer behaviors. Nonlinear relationships are observed for shock pressure and shock front thickness as a function of concentration, and a logarithmic equation is proposed to describe this behavior. In addition, the relationship between pressure and shock front thickness is compared with hydrodynamic theory. Deviation from hydrodynamic predictions is observed at high particle velocities and this deviation is found to be related to viscosity changes. A power-law relationship between strain rate and pressure in PEGDA hydrogels is identified, similar to that of metals. However, a power-law exponent of 1.4 is computed for all gel concentrations, whereas an exponent of 4 is typically reported for metals.


Subject(s)
Hydrogels/chemistry , Mechanical Phenomena , Molecular Dynamics Simulation , Polyethylene Glycols/chemistry , Water/chemistry , Hydrodynamics , Molecular Conformation , Pressure , Viscosity
5.
MethodsX ; 5: 1187-1203, 2018.
Article in English | MEDLINE | ID: mdl-30364675

ABSTRACT

One of the limitations of atomistic simulations is that many of the computational tools used to extract structural information from atomic trajectories provide metrics that are not directly compatible with experiments for validation. In this work, to bridge between simulation and experiment, a method is presented to produce simulated Kikuchi diffraction patterns using data from atomistic simulations, without requiring a priori specification of the crystal structure or defect periodicity. The Kikuchi pattern simulation is based on the kinematic theory of diffraction, with Kikuchi line intensities computed via a discrete structure factor calculation. Reciprocal lattice points are mapped to Kikuchi lines using a geometric projection of the reciprocal space data. This method is validated using single crystal atomistic models, and the novelty of this approach is emphasized by simulating kinematic Kikuchi diffraction patterns from an atomistic model containing a nanoscale dislocation loop. Deviations in kinematic Kikuchi line intensities are explained considering the displacement field of the dislocation loop, as is done in diffraction contrast theory.

6.
Sci Rep ; 7(1): 8332, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827660

ABSTRACT

All grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates sets of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.

7.
Nanotechnology ; 26(17): 175703, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25834943

ABSTRACT

Molecular dynamics (MD) modeling is used to study the fracture toughness and crack propagation path of monolayer molybdenum disulfide (MoS(2)) sheets under mixed modes I and II loading. Sheets with both initial armchair and zigzag cracks are studied. The MD simulations predict that crack edge chirality, tip configuration and the loading phase angle influence the fracture toughness and crack propagation path of monolayer MoS(2) sheets. Furthermore, under all loading conditions, both armchair and zigzag cracks prefer to extend along a zigzag path, which is in agreement with the crack propagation path in graphene. A remarkable out-of-plane buckling can occur during mixed mode loading which can lead to the development of buckling cracks in addition to the propagation of the initial cracks.

8.
J Nanosci Nanotechnol ; 10(9): 5587-93, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133078

ABSTRACT

Molecular dynamics simulations with many-body interatomic potentials are used to study melting of Ni and Fe nanoparticles with diameters that range between 2 and 12 nm. Two different embedded-atom method interatomic potentials are used for each element. The capability of each interatomic potential to model (i) size-dependent melting in nanoparticles and (ii) the bulk melting temperature of Ni or Fe is explored. In agreement with existing theory, molecular dynamics simulations show that the melting temperature of non-supported nanoparticles decreases with decreasing nanoparticle size, displaying a linear relationship with the inverse of nanoparticle diameter. However, molecular dynamics simulations using the interatomic potentials considered in this work provide a lower estimate than existing theory for the sensitivity of the melting temperature to nanoparticle size (slope of linear relationship). Molecular dynamics simulations demonstrate that melting is surface initiated and that a finite temperature range exists in which partial melting of the nanoparticle occurs. This observation is very important in the development of advanced vapor-liquid-solid models for catalyst-assisted single-walled carbon nanotube synthesis.

9.
Langmuir ; 25(13): 7553-60, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19507848

ABSTRACT

Molecular dynamics (MD) simulations are used to study the behavior of n-decane under sub-10 nm confinement between two gold {111} surfaces. This confinement and dielectric medium are characteristic of those used in nanoscale electromachining (nano-EM) processes; thus, it is important that the behavior of the nanoconfined dielectric medium be investigated for better process understanding. Results obtained via MD simulations indicate that, when confined down to a thickness less than 1 nm, the mechanical boundary conditions trigger organization in the n-decane medium, resulting in two distinct molecular layers. The n-decane chains lie flat on the {111} gold surfaces and show preferred orientation in the close-packed 110 crystallographic directions. A 4-fold increase in the maximum local density as compared with the experimental bulk (liquid) density is observed at the interface between the molecular medium and the gold {111} surfaces, regardless of confinement spacing. Radial distribution function curves are used to quantitatively examine organization of the medium into molecular layers. The deliberate introduction of ledges (atomic steps) on the gold surface triggers a preferred alignment of the n-decane chains toward the boundaries of the ledges.

SELECTION OF CITATIONS
SEARCH DETAIL