Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240197

ABSTRACT

Multiple myeloma (MM) is a hematologic malignancy with a multistep evolutionary pattern, in which the pro-inflammatory and immunosuppressive microenvironment and genomic instability drive tumor evolution. MM microenvironment is rich in iron, released by pro-inflammatory cells from ferritin macromolecules, which contributes to ROS production and cellular damage. In this study, we showed that ferritin increases from indolent to active gammopathies and that patients with low serum ferritin had longer first line PFS (42.6 vs. 20.7 months and, p = 0.047, respectively) and OS (NR vs. 75.1 months and p = 0.029, respectively). Moreover, ferritin levels correlated with systemic inflammation markers and with the presence of a specific bone marrow cell microenvironment (including increased MM cell infiltration). Finally, we verified by bioinformatic approaches in large transcriptomic and single cell datasets that a gene expression signature associated with ferritin biosynthesis correlated with worse outcome, MM cell proliferation, and specific immune cell profiles. Overall, we provide evidence of the role of ferritin as a predictive/prognostic factor in MM, setting the stage for future translational studies investigating ferritin and iron chelation as new targets for improving MM patient outcome.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Ferritins/genetics , Ferritins/metabolism , Monoclonal Gammopathy of Undetermined Significance/pathology , Bone Marrow/metabolism , Gene Expression Profiling , Tumor Microenvironment/genetics
2.
Hematol Rep ; 15(1): 23-49, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36648882

ABSTRACT

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multistep evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an intermediate phase called "smoldering" MM (sMM). From a biological point of view, genomic alterations (translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their role in disease evolution questionable. On the other hand, we currently know that changes in the bone marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this line, the major advancement in MM patients' survival has been achieved by the introduction of microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies). In this review, we summarized the role of the different components of the TME in MM evolution from MGUS as well as potential novel therapeutic targets/opportunities.

SELECTION OF CITATIONS
SEARCH DETAIL
...