Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(39): 17966-17979, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36130265

ABSTRACT

The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3-δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential.

2.
J Am Chem Soc ; 144(22): 9753-9763, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35609284

ABSTRACT

The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells (FCs), however, also high durability and longevity must be demonstrated. Currently, a limited understanding of degradation pathways, especially under operando conditions, hinders the design and synthesis of simultaneously active and stable Fe-N-C electrocatalysts. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under conditions close to those in FCs, that is, with a porous catalyst layer (CL) and at current densities up to -125 mA·cm-2. Varying the rate of the oxygen reduction reaction (ORR), we show a remarkable linear correlation between the Faradaic charge passed through the electrode and the amount of Fe dissolved from the electrode. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe redox transitions in Fe species involved in the ORR, such as FeNxCy and Fe3C@N-C. Moreover, such a linear correlation allows the application of a simple metric─S-number─to report the material's stability. Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand a more advanced mechanistic understanding of Fe-N-C degradation in CLs.

3.
ACS Appl Mater Interfaces ; 14(2): 3515-3525, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34990115

ABSTRACT

Aqueous sodium-ion batteries based on Prussian Blue Analogues (PBA) are considered as promising and scalable candidates for stationary energy storage systems, where longevity and cycling stability are assigned utmost importance to maintain economic viability. Although degradation due to active material dissolution is a common issue of battery electrodes, it is hardly observable directly due to a lack of in operando techniques, making it challenging to optimize the performance of electrodes. By operating Na2Ni[Fe(CN)6] and Na2Co[Fe(CN)6] model electrodes in a flow-cell setup connected to an inductively coupled plasma mass spectrometer, in this work, the dynamics of constituent transition-metal dissolution during the charge-discharge cycles was monitored in real time. At neutral pHs, the extraction of nickel and cobalt was found to drive the degradation process during charge-discharge cycles. It was also found that the nature of anions present in the electrolytes has a significant impact on the degradation rate, determining the order ClO4- > NO3- > Cl- > SO42- with decreasing stability from the perchlorate to sulfate electrolytes. It is proposed that the dissolution process is initiated by detrimental specific adsorption of anions during the electrode oxidation, therefore scaling with their respective chemisorption affinity. This study involves an entire comparison of the effectiveness of common stabilization strategies for PBAs under very fast (dis)charging conditions at 300C, emphasizing the superiority of highly concentrated NaClO4 with almost no capacity loss after 10 000 cycles for Na2Ni[Fe(CN)6].

4.
JACS Au ; 1(8): 1086-1100, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467351

ABSTRACT

Single-atom catalysts (SACs) hold great promise for maximized metal utilization, exceptional tunability of the catalytic site, and selectivity. Moreover, they can substantially contribute to lower the cost and abundancy challenges associated with raw materials. Significant breakthroughs have been achieved over the past decade, for instance, in terms of synthesis methods for SACs, their catalytic activity, and the mechanistic understanding of their functionality. Still, great challenges lie ahead in order to render them viable for application in important fields such as electrochemical energy conversion of renewable electrical energy. We have identified three particular development fields for advanced SACs that we consider crucial, namely, the scale-up of the synthesis, the understanding of their performance in real devices such as fuel cells and electrolyzers, and the understanding and mitigation of their degradation. In this Perspective, we review recent activities of the community and provide our outlook with respect to the aspects required to bring SACs toward application.

5.
Angew Chem Int Ed Engl ; 60(24): 13343-13349, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33687762

ABSTRACT

Extensive research efforts are currently dedicated to the search for new electrocatalyst materials in which expensive and rare noble metals are replaced with cheaper and more abundant transition metals. Recently, numerous alloys, oxides, and composites with such metals have been identified as highly active electrocatalysts through the use of high-throughput screening methods with the help of activity descriptors. Up to this point, stability has lacked such descriptors. Hence, we elucidate the role of intrinsic metal/oxide properties on the corrosion behavior of representative 3d, 4d, and 5d transition metals. Electrochemical dissolution of nine transition metals is quantified using online inductively coupled plasma mass spectrometry (ICP-MS). Based on the obtained dissolution data in alkaline and acidic media, we establish clear periodic correlations between the amount of dissolved metal, the cohesive energy of the metal atoms (Ecoh ), and the energy of oxygen adsorption on the metal (ΔHO,ads ). Such correlations can support the knowledge-driven search for more stable electrocatalysts.

6.
Small ; 16(37): e2003161, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803861

ABSTRACT

High investment costs and a dependence on noble metal catalysts currently obstruct the large-scale implementation of proton exchange membrane water electrolyzers (PEMWEs) for converting fluctuating green electricity into chemical energy via water splitting. In this context, this work presents a high-performing and stable non-noble metal catalyst for the hydrogen evolution reaction (HER), consisting of [Mo3 S13 ]2- clusters supported on nitrogen doped carbon nanotubes (NCNTs). Strikingly, a significant electrochemically induced activation of the Mo3 S13 -NCNT catalyst at high current densities is observed in full cell configuration, enabling a remarkable current density of 4 A cm-2 at a cell voltage of 2.36 V. To the authors' knowledge, this is the highest reported value to date for a PEMWE full cell using a non-noble metal HER catalyst. Furthermore, only a minor degradation of 83 µV h-1 is observed during a stability test of 100 h constant current at 1 A cm-2 , with a nearly unchanged polarization behavior after the current hold. Catalyst stability and activity are additionally analyzed via online dissolution measurements. X-ray photoelectron spectroscopy examination of the catalyst before and after electrochemical application reveals a correlation between the electrochemical activation occurring via electrodissolution with changes in the molecular structure of the Mo3 S13 -NCNT catalyst.

7.
J Am Chem Soc ; 142(36): 15496-15504, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32794757

ABSTRACT

Single-atom catalysts (SACs) have quickly emerged as a new class of catalytic materials. When confronted with classical carbon-supported nanoparticulated catalysts (Pt/C), SACs are often claimed to have superior electrocatalytic properties, e.g., stability. In this study, we critically assess this statement by investigating S-doped carbon-supported Pt SACs as a representative example of noble-metal-based SACs. We use a set of complementary techniques, which includes online inductively coupled plasma mass spectrometry (online ICP-MS), identical location transmission electron microscopy (IL-TEM), and X-ray photoelectron spectroscopy (XPS). It is shown by online ICP-MS that the dissolution behavior of as-synthesized Pt SACs is significantly different from that of metallic Pt/C. Moreover, Pt SACs are, indeed, confirmed to be more stable toward Pt dissolution. When cycled to potentials of up to 1.5 VRHE, however, the dissolution profiles of Pt SACs and Pt/C become similar. IL-TEM and XPS show that this transition is due to morphological and chemical changes caused by cycling. The latter, in turn, is a consequence of the relatively poor stability of S ligands. As monitored by online ICP-MS and XPS, significant amounts of sulfur leave the catalyst during oxidation. Hence, in case catalysts with improved stability in the anodic potential region are desired, more robust supports and ligands must be developed.

8.
ACS Appl Mater Interfaces ; 12(30): 33670-33678, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32623879

ABSTRACT

The selective electrooxidation of 2-propanol to acetone can be used in fuel cells which, when combined with the transfer hydrogenation of acetone from liquid organic hydrogen carriers, will enable the realization of hydrogen economy without using molecular hydrogen gas for storage and transportation. We study the reaction on platinum and platinum-ruthenium nanocatalysts using unique tools for the real-time characterization of reaction and dissolution products. Acetone is the primary product on all investigated catalysts, and only traces of CO2 form at high potentials. We propose that the reaction occurs on Pt-Ru ensemble sites at low potentials and on Pt-Pt sites at high potentials. Dissolution of surface ruthenium atoms leads to suppression of the process at low overpotential. The main shortcomings to be addressed for an efficient catalyst performance are (a) the narrow potential range in which the bimetallic catalyst is active, (b) the surface poisoning from adsorbed acetone, and (c) the dissolution of ruthenium.

9.
Nat Commun ; 11(1): 555, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992696

ABSTRACT

Graphene, the first true two-dimensional material, still reveals the most remarkable transport properties among the growing class of two-dimensional materials. Although many studies have investigated fundamental scattering processes, the surprisingly large variation in the experimentally determined resistances is still an open issue. Here, we quantitatively investigate local transport properties of graphene prepared by polymer assisted sublimation growth using scanning tunneling potentiometry. These samples exhibit a spatially homogeneous current density, which allows to analyze variations in the local electrochemical potential with high precision. We utilize this possibility by examining the local sheet resistance finding a significant variation of up to 270% at low temperatures. We identify a correlation of the sheet resistance with the stacking sequence of the 6H silicon carbide substrate and with the distance between the graphene and the substrate. Our results experimentally quantify the impact of the graphene-substrate interaction on the local transport properties of graphene.

10.
Inorg Chem ; 59(6): 3353-3366, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-31940184

ABSTRACT

The simultaneous hydrolysis of Bi(NO3)3·5H2O and Ce(NO3)3·6H2O results in the formation of novel heterometallic bismuth oxido clusters with the general formula [Bi38O45(NO3)24(DMSO)28+δ]:Ce (DMSO = dimethyl sulfoxide; cerium content <1.50%), which is demonstrated by single-crystal X-ray diffraction analysis. The incorporation of cerium into the cluster core is a result of the interplay of hydrolysis and condensation of the metal nitrates in the presence of oxygen. Diffuse-reflectance UV-vis and X-ray photoelectron spectroscopy reveal the presence of CeIV in the final bismuth oxido clusters as a result of oxidation of the cerium source. The cerium atoms are statistically distributed mainly on the bismuth atom positions of the central [Bi6O9] motif of the [Bi38O45] cluster core. Hydrolysis and subsequent annealing of the bismuth oxido clusters in the temperature range of 300-400 °C provides ß-Bi2O3:Ce samples with slightly lowered band gaps of approximately 2.3 eV compared to the undoped ß-Bi2O3 (approximately 2.4 eV). The sintering behavior of ß-Bi2O3 is significantly affected by the cerium dopant. Finally, differences in the efficiency of the as-prepared ß-Bi2O3:Ce and undoped ß-Bi2O3 samples in the photocatalytic decomposition of the biocide triclosan in an aqueous solution under visible-light irradiation are demonstrated.

11.
Sci Adv ; 4(5): eaar5170, 2018 05.
Article in English | MEDLINE | ID: mdl-29806026

ABSTRACT

The shape and density of grain boundary defects in graphene strongly influence its electrical, mechanical, and chemical properties. However, it is difficult and elaborate to gain information about the large-area distribution of grain boundary defects in graphene. An approach is presented that allows fast visualization of the large-area distribution of grain boundary-based line defects in chemical vapor deposition graphene after transferring graphene from the original copper substrate to a silicon dioxide surface. The approach is based on exposing graphene to vapor hydrofluoric acid (VHF), causing partial etching of the silicon dioxide underneath the graphene as VHF diffuses through graphene defects. The defects can then be identified using optical microscopy, scanning electron microscopy, or Raman spectroscopy. The methodology enables simple evaluation of the grain sizes in polycrystalline graphene and can therefore be a valuable procedure for optimizing graphene synthesis processes.

12.
J Phys Condens Matter ; 30(5): 055001, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29244027

ABSTRACT

Rotationally disordered, layered (PbSe)[Formula: see text](NbSe2)2 and (SnSe)[Formula: see text](NbSe2)2 ferecrystal heterostructures, consisting of stacked two-dimensional bilayers of either PbSe or SnSe alternating with two planes of NbSe2, were synthesized from modulated elemental reactants. The electronic structure of these ternary systems was investigated using x-ray photoelectron spectroscopy and compared to the binary bulk compounds PbSe, SnSe and NbSe2. The Pb and Sn core level spectra show a significant shift towards lower binding energies and the peak shape becomes asymmetric in the ferecrystals, while the electronic structure of the NbSe2 layers does not change compared to the bulk. This is interpreted in terms of an interlayer interaction in the form of a charge transfer of electrons from PbSe or SnSe into the NbSe2 layers, which is supported by valence band spectra and is consistent with prior results from transport measurements.

13.
ACS Nano ; 8(8): 7801-8, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25106688

ABSTRACT

Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of ∼6 eV and a metastable one, induced by UV irradiation, with a band gap of ∼2.5 eV. The metastable structure, which reverts to the stable "ground-state" phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a "boat" structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.

14.
Nano Lett ; 13(12): 6210-5, 2013.
Article in English | MEDLINE | ID: mdl-24188400

ABSTRACT

We employ tip-enhanced infrared near-field microscopy to study the plasmonic properties of epitaxial quasi-free-standing monolayer graphene on silicon carbide. The near-field images reveal propagating graphene plasmons, as well as a strong plasmon reflection at gaps in the graphene layer, which appear at the steps between the SiC terraces. When the step height is around 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20% of its value at graphene edges, and it approaches 50% for step heights as small as 5 nm. This intriguing observation is corroborated by numerical simulations and explained by the accumulation of a line charge at the graphene termination. The associated electromagnetic fields at the graphene termination decay within a few nanometers, thus preventing efficient plasmon transmission across nanoscale gaps. Our work suggests that plasmon propagation in graphene-based circuits can be tailored using extremely compact nanostructures, such as ultranarrow gaps. It also demonstrates that tip-enhanced near-field microscopy is a powerful contactless tool to examine nanoscale defects in graphene.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Graphite/chemistry , Nanostructures/chemistry , Silicon Compounds/chemistry , Electromagnetic Fields , Microscopy, Atomic Force , Surface Plasmon Resonance , Surface Properties
15.
ACS Nano ; 7(11): 10032-7, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24090358

ABSTRACT

We study epitaxial graphene on the 6H-SiC(0001) surface under ambient conditions using frequency-modulation atomic force microscopy. We observe large terraces with a self-assembled stripe structure within a highly adsorbate covered surface on top of the graphene. To identify the origin of the structure, we compare the experimental data on graphene with calculations and experiments on graphite that predict the formation of a solid-gas monolayer in the solid-liquid interface of hydrophobic surfaces.

16.
Nanotechnology ; 23(39): 395203, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22971877

ABSTRACT

In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role.

17.
Nat Mater ; 10(5): 357-60, 2011 May.
Article in English | MEDLINE | ID: mdl-21460820

ABSTRACT

High-quality epitaxial graphene on silicon carbide (SiC) is today available in wafer size. Similar to exfoliated graphene, its charge carriers are governed by the Dirac-Weyl Hamiltonian and it shows excellent mobilities. For many experiments with graphene, in particular for surface science, a bottom gate is desirable. Commonly, exfoliated graphene flakes are placed on an oxidized silicon wafer that readily provides a bottom gate. However, this cannot be applied to epitaxial graphene as the SiC provides the source material out of which graphene grows. Here, we present a reliable scheme for the fabrication of bottom-gated epitaxial graphene devices, which is based on nitrogen (N) implantation into a SiC wafer and subsequent graphene growth. We demonstrate working devices in a broad temperature range from 6 to 300 K. Two gating regimes can be addressed, which opens a wide engineering space for tailored devices by controlling the doping of the gate structure.

18.
Science ; 328(5981): 999-1002, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20489018

ABSTRACT

A hallmark of graphene is its unusual conical band structure that leads to a zero-energy band gap at a single Dirac crossing point. By measuring the spectral function of charge carriers in quasi-freestanding graphene with angle-resolved photoemission spectroscopy, we showed that at finite doping, this well-known linear Dirac spectrum does not provide a full description of the charge-carrying excitations. We observed composite "plasmaron" particles, which are bound states of charge carriers with plasmons, the density oscillations of the graphene electron gas. The Dirac crossing point is resolved into three crossings: the first between pure charge bands, the second between pure plasmaron bands, and the third a ring-shaped crossing between charge and plasmaron bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...