Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Am Chem Soc ; 144(39): 17966-17979, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36130265

ABSTRACT

The stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3-δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential.

2.
J Am Chem Soc ; 144(22): 9753-9763, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35609284

ABSTRACT

The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells (FCs), however, also high durability and longevity must be demonstrated. Currently, a limited understanding of degradation pathways, especially under operando conditions, hinders the design and synthesis of simultaneously active and stable Fe-N-C electrocatalysts. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under conditions close to those in FCs, that is, with a porous catalyst layer (CL) and at current densities up to -125 mA·cm-2. Varying the rate of the oxygen reduction reaction (ORR), we show a remarkable linear correlation between the Faradaic charge passed through the electrode and the amount of Fe dissolved from the electrode. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe redox transitions in Fe species involved in the ORR, such as FeNxCy and Fe3C@N-C. Moreover, such a linear correlation allows the application of a simple metric─S-number─to report the material's stability. Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand a more advanced mechanistic understanding of Fe-N-C degradation in CLs.

3.
JACS Au ; 1(8): 1086-1100, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467351

ABSTRACT

Single-atom catalysts (SACs) hold great promise for maximized metal utilization, exceptional tunability of the catalytic site, and selectivity. Moreover, they can substantially contribute to lower the cost and abundancy challenges associated with raw materials. Significant breakthroughs have been achieved over the past decade, for instance, in terms of synthesis methods for SACs, their catalytic activity, and the mechanistic understanding of their functionality. Still, great challenges lie ahead in order to render them viable for application in important fields such as electrochemical energy conversion of renewable electrical energy. We have identified three particular development fields for advanced SACs that we consider crucial, namely, the scale-up of the synthesis, the understanding of their performance in real devices such as fuel cells and electrolyzers, and the understanding and mitigation of their degradation. In this Perspective, we review recent activities of the community and provide our outlook with respect to the aspects required to bring SACs toward application.

4.
Angew Chem Int Ed Engl ; 60(24): 13343-13349, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33687762

ABSTRACT

Extensive research efforts are currently dedicated to the search for new electrocatalyst materials in which expensive and rare noble metals are replaced with cheaper and more abundant transition metals. Recently, numerous alloys, oxides, and composites with such metals have been identified as highly active electrocatalysts through the use of high-throughput screening methods with the help of activity descriptors. Up to this point, stability has lacked such descriptors. Hence, we elucidate the role of intrinsic metal/oxide properties on the corrosion behavior of representative 3d, 4d, and 5d transition metals. Electrochemical dissolution of nine transition metals is quantified using online inductively coupled plasma mass spectrometry (ICP-MS). Based on the obtained dissolution data in alkaline and acidic media, we establish clear periodic correlations between the amount of dissolved metal, the cohesive energy of the metal atoms (Ecoh ), and the energy of oxygen adsorption on the metal (ΔHO,ads ). Such correlations can support the knowledge-driven search for more stable electrocatalysts.

5.
Small ; 16(37): e2003161, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803861

ABSTRACT

High investment costs and a dependence on noble metal catalysts currently obstruct the large-scale implementation of proton exchange membrane water electrolyzers (PEMWEs) for converting fluctuating green electricity into chemical energy via water splitting. In this context, this work presents a high-performing and stable non-noble metal catalyst for the hydrogen evolution reaction (HER), consisting of [Mo3 S13 ]2- clusters supported on nitrogen doped carbon nanotubes (NCNTs). Strikingly, a significant electrochemically induced activation of the Mo3 S13 -NCNT catalyst at high current densities is observed in full cell configuration, enabling a remarkable current density of 4 A cm-2 at a cell voltage of 2.36 V. To the authors' knowledge, this is the highest reported value to date for a PEMWE full cell using a non-noble metal HER catalyst. Furthermore, only a minor degradation of 83 µV h-1 is observed during a stability test of 100 h constant current at 1 A cm-2 , with a nearly unchanged polarization behavior after the current hold. Catalyst stability and activity are additionally analyzed via online dissolution measurements. X-ray photoelectron spectroscopy examination of the catalyst before and after electrochemical application reveals a correlation between the electrochemical activation occurring via electrodissolution with changes in the molecular structure of the Mo3 S13 -NCNT catalyst.

6.
J Am Chem Soc ; 142(36): 15496-15504, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32794757

ABSTRACT

Single-atom catalysts (SACs) have quickly emerged as a new class of catalytic materials. When confronted with classical carbon-supported nanoparticulated catalysts (Pt/C), SACs are often claimed to have superior electrocatalytic properties, e.g., stability. In this study, we critically assess this statement by investigating S-doped carbon-supported Pt SACs as a representative example of noble-metal-based SACs. We use a set of complementary techniques, which includes online inductively coupled plasma mass spectrometry (online ICP-MS), identical location transmission electron microscopy (IL-TEM), and X-ray photoelectron spectroscopy (XPS). It is shown by online ICP-MS that the dissolution behavior of as-synthesized Pt SACs is significantly different from that of metallic Pt/C. Moreover, Pt SACs are, indeed, confirmed to be more stable toward Pt dissolution. When cycled to potentials of up to 1.5 VRHE, however, the dissolution profiles of Pt SACs and Pt/C become similar. IL-TEM and XPS show that this transition is due to morphological and chemical changes caused by cycling. The latter, in turn, is a consequence of the relatively poor stability of S ligands. As monitored by online ICP-MS and XPS, significant amounts of sulfur leave the catalyst during oxidation. Hence, in case catalysts with improved stability in the anodic potential region are desired, more robust supports and ligands must be developed.

7.
ACS Appl Mater Interfaces ; 12(30): 33670-33678, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32623879

ABSTRACT

The selective electrooxidation of 2-propanol to acetone can be used in fuel cells which, when combined with the transfer hydrogenation of acetone from liquid organic hydrogen carriers, will enable the realization of hydrogen economy without using molecular hydrogen gas for storage and transportation. We study the reaction on platinum and platinum-ruthenium nanocatalysts using unique tools for the real-time characterization of reaction and dissolution products. Acetone is the primary product on all investigated catalysts, and only traces of CO2 form at high potentials. We propose that the reaction occurs on Pt-Ru ensemble sites at low potentials and on Pt-Pt sites at high potentials. Dissolution of surface ruthenium atoms leads to suppression of the process at low overpotential. The main shortcomings to be addressed for an efficient catalyst performance are (a) the narrow potential range in which the bimetallic catalyst is active, (b) the surface poisoning from adsorbed acetone, and (c) the dissolution of ruthenium.

SELECTION OF CITATIONS
SEARCH DETAIL
...