Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(8): 2690-2698, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28170014

ABSTRACT

A new tridentate phenanthroline-pyridyl-based ligand 1 containing a redox active Tara (triaryl amine) unit has been developed (1 = 4-((6-(1,10-phenanthrolin-2-yl)pyridin-2-yl)oxy)-N,N-di-p-tolylaniline). The complex [Co2+(1)2](ClO4/BF4)2 was prepared and the order of the oxidation steps was analysed by cyclic voltammetry and EPR/UV-vis-NIR spectroelectrochemistry. Oxidation of [Co2+(1)2]2+ to [Co3+(1+)2]5+ proceeds in two steps. The first step is the Co2+/3+ centred oxidation to [Co3+(1)2]3+ (E°'(M2+/3+) = 284 mV vs. Fc/Fc+) followed by oxidation of the Tara0/+ centres (E°'(Tara) = 531 mV). Both kinds of oxidation processes were independently investigated in the analogous complexes [Zn(1)2](ClO4)2 and [Co(2)2](BF4)2 allowing an assignment of changes in the electronic spectra to the redox states (2 = 2-(6-phenoxypyridin-2-yl)-1,10-phenanthroline). Although spectroelectrochemistry did not indicate substantial coupling between the redox centres the Tara unit is an efficient mediator for the self-exchange in the [Co2+/3+(1)2]2+/3+ couple. The electron transfer by self-exchange in [Co2+/3+(1)2]2+/3+ was further investigated by variable temperature (VT) 1H NMR spectroscopy. In addition, the resonances found in the paramagnetic proton NMR spectra were assigned by using COSY, T1 and EXSY measurements in combination with the Co-N distances obtained from X-ray analysis. [Co(1)2]2+ is found in the HS state. In contrast, the Fe2+ species [Fe(1)2](ClO4)2 is a spincrossover system. The SCO was analysed in solution by VT 1H NMR and VT/vis spectroscopy.

2.
Dalton Trans ; 45(35): 13798-809, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27506162

ABSTRACT

A series of Fe(2+) spin crossover (SCO) complexes [Fe(5/6)](2+) employing hexadentate ligands (5/6) with cis/trans-1,2-diamino cyclohexanes (4) as central building blocks were synthesised. The ligands were obtained by reductive amination of 4 with 2,2'-bipyridyl-6-carbaldehyde or 1,10-phenanthroline-2-carbaldehyde 3. The chelating effect and the rigid structure of the ligands 5/6 lead to exceptionally robust Fe(2+) and Zn(2+) complexes conserving their structure even in coordinating solvents like dmso at high temperatures. Their solution behavior was investigated using variable temperature (VT) (1)H NMR spectroscopy and VT Vis spectroscopy. SCO behavior was found for all Fe(2+) complexes in this series centred around and far above room temperature. For the first time we have demonstrated that the thermodynamics as well as kinetics for SCO can be deduced by using VT (1)H NMR spectroscopy. An alternative scheme using a linear correction term C(1) to model chemical shifts for Fe(2+) SCO complexes is presented. The rate constant for the SCO of [Fe(rac-trans-5)](2+) obtained by VT (1)H NMR was validated by Laser Flash Photolysis (LFP), with excellent agreement (1/(kHL + kLH) = 33.7/35.8 ns for NMR/LFP). The solvent dependence of the transition temperature T1/2 and the solvatochromism of complex [Fe(rac-trans-5)](2+) were ascribed to hydrogen bond formation of the secondary amine to the solvent. Enantiomerically pure complexes can be prepared starting with R,R- or S,S-1,2-diaminocyclohexane (R,R-trans-4 or S,S-trans-4). The high robustness of the complexes reduces a possible ligand scrambling and allows preparation of quasiracemic crystals of [Zn(R,R-5)][Fe(S,S-5)](ClO4)4·(CH3CN) composed of a 1 : 1 mixture of the Zn and Fe complexes with inverse chirality.

3.
Inorg Chem ; 52(24): 14253-63, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24299202

ABSTRACT

A series of ferrocenyl (Fc = ferrocenyl; fc = ferrocen-1,1'-diyl) and biferrocenyl (Bfc = 1',1″-biferrocenyl; bfc = 1',1″-biferrocen-1,1‴-diyl) mono- and biscarbene tungsten(0) complexes of the type [(CO)5W═C(OMe)R] (1, R = Fc; 3, R = Bfc) and [(CO)5W═C(OMe)-R'-(OMe)C═W(CO)5] (2, R' = fc; 4, R' = bfc) were synthesized according to the classical synthetic methodology by reacting W(CO)6 with LiR (R = Fc, fc, bfc), followed by a subsequent alkylation using methyl trifluoromethanesulfonate. Electrochemical investigations were carried out on these complexes to get a closer insight into the electronic properties of 1-4. The ferrocenyl and biferrocenyl moieties in 1-4 show reversible one-electron redox events. It was further found that the Fischer carbene unit is reducible in an electrochemical one-electron transfer process. For the tungsten carbonyl moieties, irreversible oxidation processes were found. In addition, charge transfer studies were performed on 1-4 using in situ UV-vis-NIR and infrared spectroelectrochemical techniques. During the UV-vis-NIR investigations, typical low energy transitions for the mixed-valent biferrocenyl unit were found. A further observed high energy NIR absorption is attributed to a metal-metal charge transfer transition between the tungsten carbonyl fragment and the ferrocenyl/biferrocenyl group in the corresponding oxidized states, which can be described as class II systems according to Robin and Day. This assignment was verified by infrared spectroelectrochemical studies. The electrochemical investigations are supported by density functional theory calculations. The structural properties of 1-4 in the solid state were investigated by single-crystal X-ray diffraction studies showing no substituent effects on bond lengths and angles. The biferrocenyl derivatives exhibit syn-conformation of the ferrocenyl and carbene building blocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...