Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(11): 9465-9484, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38753983

ABSTRACT

Clostridioides difficile (C. difficile) is one of the leading causes of healthcare-associated infections worldwide. The increasing incidence of strains resistant to currently available therapies highlights the need for alternative treatment options with a novel mode of action. Oxazolidinones that are connected to a quinolone moiety with a pyrrolidine linker, such as compound 1, are reported to exhibit potent broadspectrum antibacterial activity. In an effort to optimize this class of compounds for the treatment of C. difficile infection (CDI), we have identified cadazolid (9), a first-in-class quinoxolidinone antibiotic, which is a potent inhibitor of C. difficile protein synthesis. In order to achieve narrow-spectrum coverage of clinically most relevant strains without affecting the gut microbiota, an emphasis was placed on abolishing activity against commensals of the intestinal microbiome while retaining good coverage of pathogenic C. difficile, including hypervirulent and epidemic strains.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Microbial Sensitivity Tests , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemical synthesis , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Animals , Humans , Drug Discovery , Gastrointestinal Microbiome/drug effects , Mice , Oxazolidinones
2.
J Med Chem ; 63(1): 66-87, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31804826

ABSTRACT

UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Escherichia coli Infections/drug therapy , Gram-Negative Bacteria/drug effects , Hydroxamic Acids/therapeutic use , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Escherichia coli/drug effects , Female , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Klebsiella pneumoniae/drug effects , Mice, Inbred ICR , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use
3.
Bioorg Med Chem Lett ; 22(21): 6705-11, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23006603

ABSTRACT

A series of 2-amino-[1,8]-naphthyridine-3-carboxamides (ANCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligases (LigAs) evolved from a 2,4-diaminopteridine derivative discovered by HTS. The design was guided by several highly resolved X-ray structures of our inhibitors in complex with either Streptococcus pneumoniae or Escherichia coli LigA. The structure-activity-relationship based on the ANC scaffold is discussed. The in-depth characterization of 2-amino-6-bromo-7-(trifluoromethyl)-[1,8]-naphthyridine-3-carboxamide, which displayed promising in vitro (MIC Staphylococcus aureus 1 mg/L) and in vivo anti-staphylococcal activity, is presented.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , DNA Ligases/antagonists & inhibitors , Drug Design , Staphylococcus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Crystallography, X-Ray , DNA, Bacterial/antagonists & inhibitors , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Rats , Staphylococcal Infections/drug therapy , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 13(23): 4229-33, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14623007

ABSTRACT

Oxazolidinone-quinolone hybrids, which combine the pharmacophores of a quinolone and an oxazolidinone, were synthesised and shown to be active against a variety of susceptible and resistant Gram-positive and Gram-negative bacteria. The nature of the spacer greatly influences the antibacterial activity by directing the mode of action, that is quinolone- and/or oxazolidinone-like activity. The best compounds in this series have a balanced dual mode of action and overcome all types of resistance, including resistance to quinolones and linezolid, in clinically relevant Gram-positive pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Oxazolidinones/pharmacology , Quinolones/pharmacology , Acetamides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Topoisomerase IV/antagonists & inhibitors , Linezolid , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/chemical synthesis , Oxazolidinones/chemistry , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem ; 11(10): 2313-9, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12713843

ABSTRACT

Oxazolidinone-quinolone hybrids that combine the pharmacophores of a quinolone and an oxazolidinone were synthesised and shown to be active against a variety of resistant and susceptible Gram-positive and fastidious Gram-negative organisms. The best compounds in this series overcome all types of resistance in relevant clinical Gram-positive pathogens. The nature of the spacer greatly influences the antibacterial activity. The dual mode of action could be demonstrated for compounds having a piperazinyl spacer. Antibacterial activity was higher at acidic pH.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Oxazolidinones/chemistry , Oxazolidinones/pharmacology , Quinolones/chemistry , Quinolones/pharmacology , Anti-Bacterial Agents/chemical synthesis , DNA Gyrase/metabolism , DNA Topoisomerase IV/metabolism , Drug Design , Drug Evaluation, Preclinical , Drug Resistance, Multiple , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/chemical synthesis , Protein Biosynthesis , Quinolones/chemical synthesis , Structure-Activity Relationship , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...