Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 51(1): 83-98, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12602893

ABSTRACT

In order to make the tomato genome more accessible for molecular analysis and gene cloning, we have produced 405 individual tomato (Lycopersicon esculentum) lines containing a characterized copy of pJasm13, a multifunctional T-DNA/modified Ds transposon element construct. Both the T-DNA and the Ds element in pJasm13 harbor a set of selectable marker genes to monitor excision and reintegration of Ds and additionally, target sequences for rare cutting restriction enzymes (I-PpoI, SfiI, NotI) and for site-specific recombinases (Cre, FLP, R). Blast analysis of flanking genomic sequences of 174 T-DNA inserts revealed homology to transcribed genes in 69 (40%), of which about half are known or putatively identified as genes and ESTs. The map position of 140 individual inserts was determined on the molecular genetic map of tomato. These inserts are distributed over the 12 chromosomes of tomato, allowing targeted and non-targeted transposon tagging, marking of closely linked genes of interest and induction of chromosomal rearrangements including translocations or creation of saturation-deletions or inversions within defined regions linked to the T-DNA insertion site. The different features of pJasm13 were successfully tested in tomato and Arabidopsis thaliana, thus providing a new tool for molecular/genetic dissection studies, including molecular and physical mapping, mutation analysis and cloning strategies in tomato and potentially, in other plants as well.


Subject(s)
Cloning, Molecular/methods , DNA, Bacterial/genetics , DNA, Plant/genetics , Genome, Plant , Solanum lycopersicum/genetics , Genetic Markers , Genetic Vectors , Plasmids , Polymorphism, Genetic , Recombination, Genetic , Restriction Mapping
2.
Genome ; 36(2): 261-7, 1993 Apr.
Article in English | MEDLINE | ID: mdl-18469985

ABSTRACT

Alien chromosome transmission through the female germ line as well as meiosis in pollen mother cells were studied in disomic and ditelosomic alien chromosome additions of beet. Beta vulgaris, carrying an extra pair of chromosomes or telosomes of B. procumbens or B. patellaris, respectively. The alien chromosomes carried genes for resistance to the beet cyst nematode, Heterodera schachtii, and screening for this resistance was used to select plants with or without the alien chromosomes. A great variation for alien chromosome transmission was recorded and plants carrying two extra alien chromosomes were recovered in the backcross progenies of the disomic or ditelosomic additions. However, in these progenies the average frequencies of plants without alien chromosomes (86%) did not clearly differ from that in similar progenies of the original monosomic or monotelosomic chromosome additions, indicating that doubling the number of the alien chromosome did not enlarge their transmission to the next generation. The alien chromosomes fully paired at pachytene and desynapsed again before diakinesis, indicating decreased chiasma formation. At second metaphase nearly 60% of the cells had one extra chromosome, and the remaining cells carried two or no extra chromosomes in about equal proportions. The tetrads looked fully normal. The expected relation between the average number of alien chromosomes in the germ cells and in the plants of the progenies did not show up, indicating a strong selection favouring the female gametes without alien chromosomes.

3.
Theor Appl Genet ; 73(6): 920-5, 1987 Apr.
Article in English | MEDLINE | ID: mdl-24241304

ABSTRACT

Haploid plantlets from male fertile and male sterile sugarbeet plants could be induced at frequencies up to 2.2% using ovule culture. Ovary culture on media without charcoal resulted in a similar induction frequency. Plant development was inhibited by callus development originating from the mother tissue. When the callus parts were removed and the ovule transferred to a new medium without 2,4 D, callus formation could be inhibited by adding 0.5% charcoal to the medium. Up to 6.1% haploids were induced. Chromosome counts in leaf tips, chloroplast counts and isozyme patterns revealed that all plants were haploid and originated from the haploid cells of the embryo sac. Root tips showed spontaneous polyploidisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...