Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 34(3): 2072-2083, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658890

ABSTRACT

OBJECTIVES: To develop a deep-learning method for whole-body fetal segmentation based on MRI; to assess the method's repeatability, reproducibility, and accuracy; to create an MRI-based normal fetal weight growth chart; and to assess the sensitivity to detect fetuses with growth restriction (FGR). METHODS: Retrospective data of 348 fetuses with gestational age (GA) of 19-39 weeks were included: 249 normal appropriate for GA (AGA), 19 FGR, and 80 Other (having various imaging abnormalities). A fetal whole-body segmentation model with a quality estimation module was developed and evaluated in 169 cases. The method was evaluated for its repeatability (repeated scans within the same scanner, n = 22), reproducibility (different scanners, n = 6), and accuracy (compared with birth weight, n = 7). A normal MRI-based growth chart was derived. RESULTS: The method achieved a Dice = 0.973, absolute volume difference ratio (VDR) = 1.8% and VDR mean difference = 0.75% ([Formula: see text]: - 3.95%, 5.46), and high agreement with the gold standard. The method achieved a repeatability coefficient = 4.01%, ICC = 0.99, high reproducibility with a mean difference = 2.21% ([Formula: see text]: - 1.92%, 6.35%), and high accuracy with a mean difference between estimated fetal weight (EFW) and birth weight of - 0.39% ([Formula: see text]: - 8.23%, 7.45%). A normal growth chart (n = 246) was consistent with four ultrasound charts. EFW based on MRI correctly predicted birth-weight percentiles for all 18 fetuses ≤ 10thpercentile and for 14 out of 17 FGR fetuses below the 3rd percentile. Six fetuses referred to MRI as AGA were found to be < 3rd percentile. CONCLUSIONS: The proposed method for automatic MRI-based EFW demonstrated high performance and sensitivity to identify FGR fetuses. CLINICAL RELEVANCE STATEMENT: Results from this study support the use of the automatic fetal weight estimation method based on MRI for the assessment of fetal development and to detect fetuses at risk for growth restriction. KEY POINTS: • An AI-based segmentation method with a quality assessment module for fetal weight estimation based on MRI was developed, achieving high repeatability, reproducibility, and accuracy. • An MRI-based fetal weight growth chart constructed from a large cohort of normal and appropriate gestational-age fetuses is proposed. • The method showed a high sensitivity for the diagnosis of small fetuses suspected of growth restriction.


Subject(s)
Deep Learning , Fetal Weight , Infant, Newborn , Female , Pregnancy , Humans , Infant , Birth Weight , Infant, Small for Gestational Age , Retrospective Studies , Reproducibility of Results , Ultrasonography, Prenatal/methods , Fetal Growth Retardation/diagnostic imaging , Fetus/diagnostic imaging , Gestational Age , Magnetic Resonance Imaging
2.
AJNR Am J Neuroradiol ; 44(12): 1432-1439, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38050002

ABSTRACT

BACKGROUND AND PURPOSE: The current imaging assessment of fetal brain gyrification is performed qualitatively and subjectively using sonography and MR imaging. A few previous studies have suggested methods for quantification of fetal gyrification based on 3D reconstructed MR imaging, which requires unique data and is time-consuming. In this study, we aimed to develop an automatic pipeline for gyrification assessment based on routinely acquired fetal 2D MR imaging data, to quantify normal changes with gestation, and to measure differences in fetuses with lissencephaly and polymicrogyria compared with controls. MATERIALS AND METHODS: We included coronal T2-weighted MR imaging data of 162 fetuses retrospectively collected from 2 clinical sites: 134 controls, 12 with lissencephaly, 13 with polymicrogyria, and 3 with suspected lissencephaly based on sonography, yet with normal MR imaging diagnoses. Following brain segmentation, 5 gyrification parameters were calculated separately for each hemisphere on the basis of the area and ratio between the contours of the cerebrum and its convex hull. Seven machine learning classifiers were evaluated to differentiate control fetuses and fetuses with lissencephaly or polymicrogyria. RESULTS: In control fetuses, all parameters changed significantly with gestational age (P < .05). Compared with controls, fetuses with lissencephaly showed significant reductions in all gyrification parameters (P ≤ .02). Similarly, significant reductions were detected for fetuses with polymicrogyria in several parameters (P ≤ .001). The 3 suspected fetuses showed normal gyrification values, supporting the MR imaging diagnosis. An XGBoost-linear algorithm achieved the best results for classification between fetuses with lissencephaly and control fetuses (n = 32), with an area under the curve of 0.90 and a recall of 0.83. Similarly, a random forest classifier showed the best performance for classification of fetuses with polymicrogyria and control fetuses (n = 33), with an area under the curve of 0.84 and a recall of 0.62. CONCLUSIONS: This study presents a pipeline for automatic quantification of fetal brain gyrification and provides normal developmental curves from a large cohort. Our method significantly differentiated fetuses with lissencephaly and polymicrogyria, demonstrating lower gyrification values. The method can aid radiologic assessment, highlight fetuses at risk, and may improve early identification of fetuses with cortical malformations.


Subject(s)
Lissencephaly , Polymicrogyria , Female , Humans , Polymicrogyria/diagnostic imaging , Retrospective Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Lissencephaly/diagnostic imaging , Fetus/diagnostic imaging
3.
J Magn Reson Imaging ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37982367

ABSTRACT

BACKGROUND: Small for gestational age (SGA) fetuses are at risk for perinatal adverse outcomes. Fetal body composition reflects the fetal nutrition status and hold promise as potential prognostic indicator. MRI quantification of fetal anthropometrics may enhance SGA risk stratification. HYPOTHESIS: Smaller, leaner fetuses are malnourished and will experience unfavorable outcomes. STUDY TYPE: Prospective. POPULATION: 40 SGA fetuses, 26 (61.9%) females: 10/40 (25%) had obstetric interventions due to non-reassuring fetal status (NRFS), and 17/40 (42.5%) experienced adverse neonatal events (CANO). Participants underwent MRI between gestational ages 30 + 2 and 37 + 2. FIELD STRENGTH/SEQUENCE: 3-T, True Fast Imaging with Steady State Free Precession (TruFISP) and T1 -weighted two-point Dixon (T1 W Dixon) sequences. ASSESSMENT: Total body volume (TBV), fat signal fraction (FSF), and the fat-to-body volumes ratio (FBVR) were extracted from TruFISP and T1 W Dixon images, and computed from automatic fetal body and subcutaneous fat segmentations by deep learning. Subjects were followed until hospital discharge, and obstetric interventions and neonatal adverse events were recorded. STATISTICAL TESTS: Univariate and multivariate logistic regressions for the association between TBV, FBVR, and FSF and interventions for NRFS and CANO. Fisher's exact test was used to measure the association between sonographic FGR criteria and perinatal outcomes. Sensitivity, specificity, positive and negative predictive values, and accuracy were calculated. A P-value <0.05 was considered statistically significant. RESULTS: FBVR (odds ratio [OR] 0.39, 95% confidence interval [CI] 0.2-0.76) and FSF (OR 0.95, CI 0.91-0.99) were linked with NRFS interventions. Furthermore, TBV (OR 0.69, CI 0.56-0.86) and FSF (OR 0.96, CI 0.93-0.99) were linked to CANO. The FBVR sensitivity/specificity for obstetric interventions was 85.7%/87.5%, and the TBV sensitivity/specificity for CANO was 82.35%/86.4%. The sonographic criteria sensitivity/specificity for obstetric interventions was 100%/33.3% and insignificant for CANO (P = 0.145). DATA CONCLUSION: Reduced TBV and FBVR may be associated with higher rates of obstetric interventions for NRFS and CANO. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 5.

4.
Eur Radiol ; 33(12): 9194-9202, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37389606

ABSTRACT

OBJECTIVES: Fat-water MRI can be used to quantify tissues' lipid content. We aimed to quantify fetal third trimester normal whole-body subcutaneous lipid deposition and explore differences between appropriate for gestational age (AGA), fetal growth restriction (FGR), and small for gestational age fetuses (SGAs). METHODS: We prospectively recruited women with FGR and SGA-complicated pregnancies and retrospectively recruited the AGA cohort (sonographic estimated fetal weight [EFW] ≥ 10th centile). FGR was defined using the accepted Delphi criteria, and fetuses with an EFW < 10th centile that did not meet the Delphi criteria were defined as SGA. Fat-water and anatomical images were acquired in 3 T MRI scanners. The entire fetal subcutaneous fat was semi-automatically segmented. Three adiposity parameters were calculated: fat signal fraction (FSF) and two novel parameters, i.e., fat-to-body volume ratio (FBVR) and estimated total lipid content (ETLC = FSF*FBVR). Normal lipid deposition with gestation and differences between groups were assessed. RESULTS: Thirty-seven AGA, 18 FGR, and 9 SGA pregnancies were included. All three adiposity parameters increased between 30 and 39 weeks (p < 0.001). All three adiposity parameters were significantly lower in FGR compared with AGA (p ≤ 0.001). Only ETLC and FSF were significantly lower in SGA compared with AGA using regression analysis (p = 0.018-0.036, respectively). Compared with SGA, FGR had a significantly lower FBVR (p = 0.011) with no significant differences in FSF and ETLC (p ≥ 0.053). CONCLUSIONS: Whole-body subcutaneous lipid accretion increased throughout the third trimester. Reduced lipid deposition is predominant in FGR and may be used to differentiate FGR from SGA, assess FGR severity, and study other malnourishment pathologies. CLINICAL RELEVANCE STATEMENT: Fetuses with growth restriction have reduced lipid deposition than appropriately developing fetuses measured using MRI. Reduced fat accretion is linked with worse outcomes and may be used for growth restriction risk stratification. KEY POINTS: • Fat-water MRI can be used to assess the fetal nutritional status quantitatively. • Lipid deposition increased throughout the third trimester in AGA fetuses. • FGR and SGA have reduced lipid deposition compared with AGA fetuses, more predominant in FGR.


Subject(s)
Fetal Growth Retardation , Infant, Small for Gestational Age , Pregnancy , Infant, Newborn , Female , Humans , Retrospective Studies , Fetal Growth Retardation/diagnostic imaging , Fetus/diagnostic imaging , Gestational Age , Adipose Tissue , Magnetic Resonance Imaging , Water , Lipids , Ultrasonography, Prenatal/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...