Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 33(1): 159-166, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28368952

ABSTRACT

Spiteri, T, Binetti, M, Scanlan, AT, Dalbo, VJ, Dolci, F, and Specos, C. Physical determinants of Division 1 Collegiate basketball, Women's National Basketball League, and Women's National Basketball Association athletes: with reference to lower-body sidedness. J Strength Cond Res 33(1): 159-166, 2019-In female basketball, the assumed components of success include power, agility, and the proficiency at executing movements using each limb. However, the importance of these attributes in discriminating between playing levels in female basketball has yet to be determined. The purpose of this study was to compare lower-body power, change of direction (COD) speed, agility, and lower-body sidedness between basketball athletes participating in Division 1 Collegiate basketball (United States), Women's National Basketball League (WNBL) (Australia), and Women's National Basketball Association (WNBA) (United States). Fifteen female athletes from each league (N = 45) completed a double- and single-leg countermovement jump (CMJ), static jump, drop jump, 5-0-5 COD test, and an offensive and a defensive agility test. One-way analysis of variance with post hoc comparisons were conducted to compare differences in physical characteristics (height, body mass, age) and performance outcomes (jump, COD, agility assessments) between playing levels. Separate dependent t-tests were performed to compare lower-body sidedness (left vs. right lower limbs) during the single-leg CMJ jumps (vertical jump height) and 5-0-5 COD test for each limb within each playing level. WNBA athletes displayed significantly greater lower-body power (p = 0.01-0.03) compared with WNBL athletes, significantly faster COD speed (p = 0.02-0.03), and offensive and defensive agility performances (p = 0.02-0.03) compared with WNBL and Collegiate athletes. The WNBL athletes also produced a faster defensive agility performance compared with Collegiate athletes (p = 0.02). Furthermore, WNBA and WNBL athletes exhibited reduced lower-body sidedness compared with Collegiate athletes. These findings indicate the importance of lower-body power, agility, and reduced lower-body imbalances to execute more proficient on-court movements required to compete at higher playing levels.


Subject(s)
Athletic Performance , Basketball/physiology , Functional Laterality , Lower Extremity/physiology , Adult , Athletes , Australia , Cross-Sectional Studies , Exercise Test , Female , Humans , Movement , Muscle Strength , United States , Universities , Young Adult
2.
J Strength Cond Res ; 28(9): 2415-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24875426

ABSTRACT

Research has often examined the relationship between 1 or 2 measures of strength and change of direction (COD) ability reporting inconsistent relationships to performance. These inconsistencies may be the result of the strength assessment used and the assumption that 1 measure of strength can represent all "types" of strength required during a COD task. Therefore the purpose of this study was to determine the relationship between several lower-body strength and power measures, COD, and agility performance. Twelve (n = 12) elite female basketball athletes completed a maximal dynamic back squat, isometric midthigh pull, eccentric and concentric only back squat, and a countermovement jump, followed by 2 COD tests (505 and T-test) and a reactive agility test. Pearson product-moment correlation and stepwise regression analysis were performed on all variables. The percentage contribution of each strength measure to an athletes total strength score was also determined. Our results demonstrated that both COD tests were significantly correlated to maximal dynamic, isometric, concentric, and eccentric strength (r = -0.79 to -0.89), with eccentric strength identified as the sole predictor of COD performance. Agility performance did not correlate with any measure of strength (r = -0.08 to -0.36), whereas lower-body power demonstrated no correlation to either agility or COD performance (r = -0.19 to -0.46). These findings demonstrate the importance of multiple strength components for COD ability, highlighting eccentric strength as a deterministic factor of COD performance. Coaches should aim to develop a well-rounded strength base in athletes; ensuring eccentric strength is developed as effectively as the often-emphasized concentric or overall dynamic strength capacity.


Subject(s)
Athletic Performance/physiology , Basketball/physiology , Movement/physiology , Muscle Strength/physiology , Adult , Exercise Test , Female , Humans , Lower Extremity , Muscle, Skeletal/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...