Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1277626, 2024.
Article in English | MEDLINE | ID: mdl-38591068

ABSTRACT

Introduction: A water extract of Centella asiatica (L.) Urban [Apiaceae] (CAW) has demonstrated cognitive-enhancing effects in mouse models of Alzheimer's disease and aging, the magnitude of which is influenced by whether CAW is delivered in the drinking water or the diet. These cognitive benefits are accompanied by improvements in oxidative stress and mitochondrial function in the brain, two pathways related to the neuroinflammatory response. The effect of CAW on neuroinflammation, however, has not been directly studied. Here, we investigated the effect of CAW on neuroinflammation in 5xFAD mice and compared plasma levels of CAW's active compounds following two modes of CAW administration. Methods: Eight-to-nine-month-old male and female 5xFAD mice and their wild-type littermates were administered CAW in their diet or drinking water (0 or 1,000 mg/kg/day) for five weeks. Immunohistochemistry was performed for ß-amyloid (Aß), glial fibrillary acidic protein (GFAP), and Griffonia simplicifolia lectin I (GSL I) in the cortex and hippocampus. Gene expression of inflammatory mediators (IL-6, TNFα, IL-1ß, TREM2, AIF1, CX3CR1, CX3CL1, CD36, C3AR1, RAGE, CCR6, CD3E) was measured in the deep grey matter. Results: CAW decreased cortical Aß plaque burden in female 5xFAD mice administered CAW in the drinking water but had no effect on Aß plaques in other treatment groups. CAW did not impact elevated levels of GFAP or GSL I in 5xFAD mice, regardless of sex, brain region, or mode of CAW administration. In the deep grey matter, CAW increased C3AR1 expression in 5xFAD females administered CAW in the drinking water and decreased IL-1ß expression in 5xFAD males administered CAW in the diet. CAW had no effect, however, on gene expression levels of any other inflammatory mediator in the deep grey, for either sex or mode of CAW administration. Mice administered CAW in the drinking water versus the diet had significantly higher plasma levels of CAW compounds. Discussion: CAW had little impact on the neuroinflammatory markers selected for evaluation in the present study, suggesting that the cognitive benefits of CAW may not be mediated by an anti-inflammatory effect or that additional molecular markers are needed to fully characterize the effect of CAW on neuroinflammation.

2.
Antioxidants (Basel) ; 11(2)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35204098

ABSTRACT

Centella asiatica is reputed in Eastern medicine to improve cognitive function in humans. Preclinical studies have demonstrated that aqueous extracts of C. asiatica improve cognition in mouse models of aging and Alzheimer's disease (AD) through the modulation of mitochondrial biogenesis and nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response genes. This randomized, double-blind, crossover Phase I trial explored the oral bioavailability and pharmacokinetics of key compounds from two doses (2 g and 4 g) of a standardized C. asiatica aqueous extract product (CAP), over 10 h, in four mildly demented older adults on cholinesterase inhibitor therapy. The analysis focused on triterpenes (TTs) and caffeoylquinic acids (CQAs), which are known to contribute to C. asiatica's neurological activity. The acute safety of CAP and the effects on NRF2 gene expression in peripheral blood mononuclear cells were evaluated. Single administration of 2 g or 4 g of CAP was safe and well-tolerated. The TT aglycones, asiatic acid and madecassic acid, were identified in plasma and urine, while the parent glycosides, asiaticoside and madecassoside, although abundant in CAP, were absent in plasma and had limited renal excretion. Similarly, mono- and di-CQAs showed delayed absorption and limited presence in plasma or urine, while the putative metabolites of these compounds showed detectable plasma pharmacokinetic profiles and urinary excretion. CAP elicited a temporal change in NRF2 gene expression, mirroring the TT aglycone's pharmacokinetic curve in a paradoxical dose-dependent manner. The oral bioavailability of active compounds or their metabolites, NRF2 target engagement, and the acute safety and tolerability of CAP support the validity of using CAP in future clinical studies.

3.
Curr Neuropharmacol ; 19(9): 1468-1495, 2021.
Article in English | MEDLINE | ID: mdl-34254920

ABSTRACT

BACKGROUND: Withania somnifera (WS), also known as Ashwagandha, is commonly used in Ayurveda and other traditional medicine systems. WS has seen an increase in worldwide usage due to its reputation as an adaptogen. This popularity has elicited increased scientific study of its biological effects, including a potential application for neuropsychiatric and neurodegenerative disorders. OBJECTIVE: This review aims to provide a comprehensive summary of preclinical and clinical studies examining the neuropsychiatric effects of WS, specifically its application in stress, anxiety, depression, and insomnia. METHODS: Reports of human trials and animal studies of WS were collected primarily from the PubMed, Scopus, and Google Scholar databases. RESULTS: WS root and leaf extracts exhibited noteworthy anti-stress and anti-anxiety activity in animal and human studies. WS also improved symptoms of depression and insomnia, though fewer studies investigated these applications. WS may alleviate these conditions predominantly through modulation of the hypothalamic-pituitary-adrenal and sympathetic-adrenal-medullary axes, as well as through GABAergic and serotonergic pathways. While some studies link specific withanolide components to its neuropsychiatric benefits, there is evidence for the presence of additional, as yet unidentified, active compounds in WS. CONCLUSION: While benefits were seen in the reviewed studies, significant variability in the WS extracts examined prevents a consensus on the optimum WS preparation or dosage for treating neuropsychiatric conditions. WS generally appears safe for human use; however, it will be important to investigate potential herb-drug interactions involving WS if used alongside pharmaceutical interventions. Further elucidation of active compounds of WS is also needed.


Subject(s)
Sleep Initiation and Maintenance Disorders , Withania , Animals , Anxiety , Depression , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Sleep Initiation and Maintenance Disorders/drug therapy
4.
Front Pharmacol ; 12: 788312, 2021.
Article in English | MEDLINE | ID: mdl-34975484

ABSTRACT

Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer's disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer's disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...