Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 155(1): 306-314, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38236810

ABSTRACT

Murine rodents generate ultrasonic vocalizations (USVs) with frequencies that extend to around 120 kHz. These calls are important in social behaviour, and so their analysis can provide insights into the function of vocal communication, and its dysfunction. The manual identification of USVs, and subsequent classification into different subcategories is time consuming. Although machine learning approaches for identification and classification can lead to enormous efficiency gains, the time and effort required to generate training data can be high, and the accuracy of current approaches can be problematic. Here, we compare the detection and classification performance of a trained human against two convolutional neural networks (CNNs), DeepSqueak (DS) and VocalMat (VM), on audio containing rat USVs. Furthermore, we test the effect of inserting synthetic USVs into the training data of the VM CNN as a means of reducing the workload associated with generating a training set. Our results indicate that VM outperformed the DS CNN on measures of call identification, and classification. Additionally, we found that the augmentation of training data with synthetic images resulted in a further improvement in accuracy, such that it was sufficiently close to human performance to allow for the use of this software in laboratory conditions.


Subject(s)
Ultrasonics , Vocalization, Animal , Rats , Animals , Mice , Humans , Social Behavior , Neural Networks, Computer , Machine Learning
2.
J Psychopharmacol ; 37(8): 809-821, 2023 08.
Article in English | MEDLINE | ID: mdl-37515458

ABSTRACT

BACKGROUND: Hippocampal phase precession, which depends on the precise spike timing of place cells relative to local theta oscillations, has been proposed to underlie sequential memory. N-methyl-D-asparate (NMDA) receptor antagonists such as ketamine disrupt memory and also reproduce several schizophrenia-like symptoms, including spatial memory impairments and disorganized cognition. It is possible that these impairments result from disruptions to phase precession. AIMS/METHODS: We used an ABA design to test whether an acute, subanesthetic dose (7.5 mg/kg) of ketamine disrupted phase precession in CA1 of male rats as they navigated around a rectangular track for a food reward. RESULTS/OUTCOMES: Ketamine did not affect the ability of CA1 place cells to precess despite changes to place cell firing rates, local field potential properties and locomotor speed. However, ketamine reduced the range of phase precession that occurred across a theta cycle. CONCLUSION: Phase precession is largely robust to acute NMDA receptor antagonism by ketamine, but the reduced range of precession could have important implications for learning and memory.


Subject(s)
Ketamine , Male , Rats , Animals , Ketamine/pharmacology , Action Potentials , Theta Rhythm , Hippocampus
3.
Brain Res ; 1814: 148446, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37301424

ABSTRACT

Hippocampal phase precession, wherein there is a systematic shift in the phase of neural firing against the underlying theta activity, is proposed to play an important role in the sequencing of information in memory. Previous research shows that the starting phase of precession is more variable in rats following maternal immune activation (MIA), a known risk factor for schizophrenia. Since starting phase variability has the potential to disorganize the construction of sequences of information, we tested whether the atypical antipsychotic clozapine, which ameliorates some cognitive deficits in schizophrenia, alters this aspect of phase precession. Either saline or clozapine (5 mg/kg) was administered to rats and then CA1 place cell activity was recorded from the CA1 region of the hippocampus as the animals ran around a rectangular track for food reward. When compared to saline trials, acute administration of clozapine did not affect any place cell properties, including those related to phase precession, in either control or MIA animals. Clozapine did, however, produce a reduction in locomotion speed, indicating that its presence had some effect on behaviour. These results help to constrain explanations of phase precession mechanisms and their potential role in sequence learning deficits.


Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Rats , Animals , Clozapine/pharmacology , Action Potentials/physiology , Hippocampus , Antipsychotic Agents/pharmacology , Schizophrenia/drug therapy , Theta Rhythm/physiology
4.
Hippocampus ; 33(9): 995-1008, 2023 09.
Article in English | MEDLINE | ID: mdl-37129454

ABSTRACT

Maternal immune activation (MIA) is a risk factor for schizophrenia and other neurodevelopmental disorders. MIA in rats models a number of the brain and behavioral changes that are observed in schizophrenia, including impaired memory. Recent studies in the MIA model have shown that the firing of the hippocampal place cells that are involved in memory processes appear relatively normal, but with abnormalities in the temporal ordering of firing. In this study, we re-analyzed data from prior hippocampal electrophysiological recordings of MIA and control animals to determine whether temporal dysfunction was evident. We find that there is a decreased ratio of slow to fast gamma power, resulting from an increase in fast gamma power and a tendency toward reduced slow gamma power in MIA rats. Moreover, we observe a robust reduction in spectral coherence between hippocampal theta and both fast and slow gamma rhythms, as well as changes in the phase of theta at which fast gamma occurs. We also find the phasic organization of place cell phase precession on the theta wave to be abnormal in MIA rats. Lastly, we observe that the local field potential of MIA rats contains more frequent sharp-wave ripple events, and that place cells were more likely to fire spikes during ripples in these animals than control. These findings provide further evidence of desynchrony in MIA animals and may point to circuit-level changes that underlie failures to integrate and encode information in schizophrenia.


Subject(s)
Neurons , Place Cells , Rats , Animals , Neurons/physiology , Gamma Rhythm , Hippocampus/physiology , Memory/physiology , Theta Rhythm/physiology
5.
Trends Neurosci ; 46(5): 341-354, 2023 05.
Article in English | MEDLINE | ID: mdl-36878821

ABSTRACT

Schizophrenia is a complex disorder that remains poorly understood, particularly at the systems level. In this opinion article we argue that the explore/exploit trade-off concept provides a holistic and ecologically valid framework to resolve some of the apparent paradoxes that have emerged within schizophrenia research. We review recent evidence suggesting that fundamental explore/exploit behaviors may be maladaptive in schizophrenia during physical, visual, and cognitive foraging. We also describe how theories from the broader optimal foraging literature, such as the marginal value theorem (MVT), could provide valuable insight into how aberrant processing of reward, context, and cost/effort evaluations interact to produce maladaptive responses.


Subject(s)
Schizophrenia , Humans , Reward , Decision Making/physiology
6.
J Neurosci ; 42(20): 4187-4201, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35396329

ABSTRACT

Spatial memory and reward processing are known to be disrupted in schizophrenia. Since the lateral septum (LS) may play an important role in the integration of location and reward, we examined the effect of maternal immune activation (MIA), a known schizophrenia risk factor, on spatial representation in the rat LS. In support of a previous study, we found that spatial location is represented as a phase code in the rostral LS of adult male rats, so that LS cell spiking shifts systematically against the phase of the hippocampal, theta-frequency, local field potential as an animal moves along a track toward a reward (phase precession). Whereas shallow precession slopes were observed in control group cells, they were steeper in the MIA animals, such that firing frequently precessed across several theta cycles as the animal moved along the length of the apparatus, with subsequent ambiguity in the phase representation of location. Furthermore, an analysis of the phase trajectories of the control group cells revealed that the population tended to converge toward a common firing phase as the animal approached the reward location. This suggested that phase coding in these cells might signal both reward location and the distance to reward. By comparison, the degree of phase convergence in the MIA-group cells was weak, and the region of peak convergence was distal to the reward location. These findings suggest that a schizophrenia risk factor disrupts the phase-based encoding of location-reward relationships in the LS, potentially smearing reward representations across space.SIGNIFICANCE STATEMENT It is unclear how spatial or contextual information generated by hippocampal cells is converted to a code that can be used to signal reward location in regions, such as the VTA. Here we provide evidence that the firing phase of cells in the lateral septum, a region that links the two areas, may code reward location in the firing phase of cells. This phase coding is disrupted in a maternal immune activation model of schizophrenia risk such that representations of reward may be smeared across space in maternal immune activation animals. This could potentially underlie erroneous reward processing and misattribution of salience in schizophrenia.


Subject(s)
Schizophrenia , Action Potentials/physiology , Animals , Hippocampus/physiology , Male , Rats , Reward , Theta Rhythm/physiology
7.
Front Neural Circuits ; 15: 741767, 2021.
Article in English | MEDLINE | ID: mdl-34675780

ABSTRACT

Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.


Subject(s)
Memory, Episodic , Schizophrenia , Animals , Hippocampus , Models, Animal , Receptors, N-Methyl-D-Aspartate , Theta Rhythm
8.
J Neurosci ; 41(32): 6954-6965, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34253630

ABSTRACT

Episodic memory requires information to be stored and recalled in sequential order, and these processes are disrupted in schizophrenia. Hippocampal phase precession and theta sequences are thought to provide a biological mechanism for sequential ordering of experience at timescales suitable for plasticity. These phenomena have not previously been examined in any models of schizophrenia risk. Here, we examine these phenomena in a maternal immune activation (MIA) rodent model. We show that while individual pyramidal cells in the CA1 region continue to precess normally in MIA animals, the starting phase of precession as an animal enters a new place field is considerably more variable in MIA animals than in controls. A critical consequence of this change is a disorganization of the ordered representation of experience via theta sequences. These results provide the first evidence of a biological-level mechanism that, if it occurs in schizophrenia, may explain aspects of disorganized sequential processing that contribute to the cognitive symptoms of the disorder.SIGNIFICANCE STATEMENT Hippocampal phase precession and theta sequences have been proposed as biophysical mechanisms by which the sequential structure of cognition might be ordered. Disturbances of sequential processing have frequently been observed in schizophrenia. Here, we show for the first time that phase precession and theta sequences are disrupted in a maternal immune activation (MIA) model of schizophrenia risk. This is a result of greater variability in the starting phase of precession, indicating that the mechanisms that coordinate precession at the assembly level are disrupted. We propose that this disturbance in phase precession underlies some of the disorganized cognitive symptoms that occur in schizophrenia. These findings could have important preclinical significance for the identification and treatment of schizophrenia risk factors.


Subject(s)
Hippocampus/physiopathology , Memory, Episodic , Prenatal Exposure Delayed Effects/physiopathology , Schizophrenia/physiopathology , Animals , Disease Models, Animal , Female , Inflammation/chemically induced , Interferon Inducers/toxicity , Male , Maternal Exposure/adverse effects , Poly I-C/toxicity , Pregnancy , Rats, Sprague-Dawley , Schizophrenia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...