Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004680

ABSTRACT

The soft ionization mechanism of helium-based plasma seems to be understood while it still remains challenging in argon-based plasma, although many studies have used argon plasmas as a soft ionization source with good ionization efficiencies. In this study, helium, argon, krypton, and xenon were fed into the same discharge geometry, a flexible micro-tube plasma (FµTP), to determine the ionization mechanisms. The FµTPs operated with the named noble gases obtained comparable ionization efficiencies by MS measurements. The optical emission results showed that N2+ were the dominant ions within the helium-FµTP and noble gas ions were dominant for the other plasmas. These ions support the development of excitation and eventually stop at the end of the capillary. Therefore, Penning ionization and charge transfer between plasma and ambient air/analytes in the open atmosphere have been proven not to be the primary soft ionization mechanism. Furthermore, it was found that photoionization played a minor role in soft ionization. Using helium as a diagnosis gas in front of the discharge capillary nozzle of the FµTP, where the sample is usually positioned, shows that helium can be ignited by all of these FµTPs. This demonstrates that the excitation of a diagnosis gas as well as the ionization of analytes is independent of the type of the discharge gas. An alternative mechanism that a transient potential created by the ions is responsible for the soft ionization is subsequently proposed.

2.
Anal Bioanal Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958704

ABSTRACT

In order to find an explanation for the mechanism in a plasma operated with an alternating voltage, or rather a square wave voltage, such a plasma was investigated. It was found that Penning ionization, charge transfer, and photoionization played a minor or even no role in the soft ionization mechanism of a FµTP. If the collision of plasma gases with air does not contribute to soft ionization, it should also be possible to use a separated plasma for soft ionization. Preliminary investigations show that it is possible to ignite a diagnosis gas with a plasma gas even when there is a barrier such as glass between those gases. A temporally and locally limited potential must be produced at the outer surface to achieve this. This potential should be sufficient to ionize the environment softly and to be able to use this so-called closed µ-tube plasma as a new ionization source.

3.
Talanta ; 249: 123662, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35691129

ABSTRACT

Non-thermal plasma-based ionization sources have been widely used and shown excellent soft ionization performance in mass spectrometry. Despite their extensive application, the ionization mechanisms of these sources are of great interest for further exploring their full potential. A controlled atmosphere can provide a clean and controllable ionization environment and is beneficial for studying the ionization mechanism. The plasma source itself also has a significant impact on the ionization mechanism of the analyte, and the voltage waveform is one of the key parameters for controlling the plasma source. In this paper, a miniature flexible micro-tube plasma (FµTP) ionization source was sustained using both square and sine-wave voltage. The ionization processes of typical semi-fluorinated n-alkanes (SFAs) were investigated in the controlled atmosphere filled with 80% N2 and 20% O2. The main mass peaks using both square and sine-wave voltages are found to be [M-mH]+ and [M-mH+nO]+ (m = 1, 3; n = 0, 1, 2). However, for the square-wave voltage, the [M-H+O]+ species are the most abundant while [M-H]+ species are dominant for the sine-wave voltage, showing that the plasma generated with sine-wave voltage is somewhat "softer" than the one with square-wave voltage for SFAs. With the assistance of optical spectroscopy, the plasma developments in one discharge cycle for both voltage waveforms were obtained. Only one discharge can be found in each half cycle for square-wave voltage while several for the sine-wave voltage. These would be responsible for the different ionization behaviors in these two cases. This work provides more insight into the ionization mechanism of SFAs and more understanding of plasma-based soft ionization. In addition, the analytical performance was evaluated to be comparable when using these two voltage generators with a big difference in cost, which will benefit the instrumental development.


Subject(s)
Alkanes , Atmosphere , Mass Spectrometry , Plasma , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...