Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 11287, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050158

ABSTRACT

Toll-like receptor 5 (TLR5) is activated by bacterial flagellins and plays a crucial role in the first-line defence against pathogenic bacteria and in immune homeostasis, and is highly conserved in vertebrate species. However, little comparative information is available on TLR5 functionality. In this study, we compared TLR5 activation using full-length and chimeric TLR5 of various vertebrate species (human, chicken, mouse, pig, cattle). Chimeric TLR5 receptors, consisting of human transmembrane and intracellular domains, linked to extracellular domains of animal origin, were generated and expressed. The comparison of chimeric TLR5s and their full-length counterparts revealed significant functional disparities. While porcine and chicken full-length TLR5s showed a strongly reduced functionality in human cells, all chimeric receptors were functional when challenged with TLR5 ligand Salmonella FliC. Using chimeric receptors as a tool allowed for the identification of ectodomain-dependent activation potential and partially host species-specific differences in response to various enteric bacterial strains and their purified flagellins. We conclude that both the extra- and intracellular determinants of TLR5 receptors are crucial for compatibility with the species expression background and hence for proper receptor functionality. TLR5 receptors with a common intracellular domain provide a useful system to investigate bacteria- and host-specific differences in receptor activation.


Subject(s)
Biological Variation, Population , Flagellin/metabolism , Gene Expression , Recombinant Proteins/metabolism , Toll-Like Receptor 5/metabolism , Animals , Humans , Protein Binding , Recombinant Proteins/genetics , Toll-Like Receptor 5/genetics , Vertebrates
2.
PLoS Pathog ; 13(7): e1006514, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28715499

ABSTRACT

Highly virulent Helicobacter pylori cause proinflammatory signaling inducing the transcriptional activation and secretion of cytokines such as IL-8 in epithelial cells. Responsible in part for this signaling is the cag pathogenicity island (cagPAI) that codetermines the risk for pathological sequelae of an H. pylori infection such as gastric cancer. The Cag type IV secretion system (CagT4SS), encoded on the cagPAI, can translocate various molecules into cells, the effector protein CagA, peptidoglycan metabolites and DNA. Although these transported molecules are known to contribute to cellular responses to some extent, a major part of the cagPAI-induced signaling leading to IL-8 secretion remains unexplained. We report here that biosynthesis of heptose-1,7-bisphosphate (HBP), an important intermediate metabolite of LPS inner heptose core, contributes in a major way to the H. pylori cagPAI-dependent induction of proinflammatory signaling and IL-8 secretion in human epithelial cells. Mutants defective in the genes required for synthesis of HBP exhibited a more than 95% reduction of IL-8 induction and impaired CagT4SS-dependent cellular signaling. The loss of HBP biosynthesis did not abolish the ability to translocate CagA. The human cellular adaptor TIFA, which was described before to mediate HBP-dependent activity in other Gram-negative bacteria, was crucial in the cagPAI- and HBP pathway-induced responses by H. pylori in different cell types. The active metabolite was present in H. pylori lysates but not enriched in bacterial supernatants. These novel results advance our mechanistic understanding of H. pylori cagPAI-dependent signaling mediated by intracellular pattern recognition receptors. They will also allow to better dissect immunomodulatory activities by H. pylori and to improve the possibilities of intervention in cagPAI- and inflammation-driven cancerogenesis.


Subject(s)
Genomic Islands , Helicobacter Infections/microbiology , Helicobacter pylori/metabolism , Heptoses/biosynthesis , Lipopolysaccharides/metabolism , Type IV Secretion Systems/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Epithelial Cells/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/genetics , Heptoses/chemistry , Humans , Interleukin-8/metabolism , Protein Transport , Type IV Secretion Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...