Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Res ; 187(4): 433-442, 2017 04.
Article in English | MEDLINE | ID: mdl-28140787

ABSTRACT

Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models.


Subject(s)
Biomimetic Materials/radiation effects , Phantoms, Imaging/veterinary , Radiometry/instrumentation , Radiometry/veterinary , Scattering, Radiation , Whole-Body Irradiation/veterinary , Animals , Computer Simulation , Equipment Design , Equipment Failure Analysis , Mice , Models, Biological , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/veterinary , Whole-Body Irradiation/instrumentation
2.
J Appl Clin Med Phys ; 15(2): 4631, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24710452

ABSTRACT

Linacs equipped with flattening filter-free (FFF) megavoltage photon beams are now commercially available. However, the commissioning of FFF beams poses challenges that are not shared with traditional flattened megavoltage X-ray beams. The planning system must model a beam that is peaked in the center and has an energy spectrum that is softer than the flattened beam. Removing the flattening filter also increases the maximum possible dose rates from 600 MU/min up to 2400 MU/min in some cases; this increase in dose rate affects the recombination correction factor, P(ion), used during absolute dose calibration with ionization chambers. We present the first reported experience of commissioning, verification, and clinical use of the collapsed cone convolution superposition (CCCS) dose calculation algorithm for commercially available flattening filter-free beams. Our commissioning data are compared to previously reported measurements and Monte Carlo studies of FFF beams. Commissioning was verified by making point-dose measurement of test plans, irradiating the RPC lung phantom, and performing patient-specific QA. The average point-dose difference between calculations and measurements of all test plans and all patient specific QA measurements is 0.80%, and the RPC phantom absolute dose differences for the two thermoluminescent dosimeters (TLDs) in the phantom planning target volume (PTV) were 1% and 2%, respectively. One hundred percent (100%) of points in the RPC phantom films passed the RPC gamma criteria of 5% and 5 mm. Our results show that the CCCS algorithm can accurately model FFF beams and calculate SBRT dose distributions using those beams.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Anthropometry , Humans , Image Processing, Computer-Assisted , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiography, Thoracic , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results , X-Rays
3.
Radiat Oncol ; 7: 68, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22568958

ABSTRACT

PURPOSE: To describe a pilot study for a novel preclinical model used to test human tissue-based therapies in the setting of cutaneous radiation injury. METHODS: A protocol was designed to irradiate the skin of athymic rats while sparing the body and internal organs by utilizing a non-occlusive skin clamp along with an x-ray image guided stereotactic irradiator. Each rat was irradiated both on the right and the left flank with a circular field at a 20 cm source-to-surface distance (SSD). Single fractions of 30.4 Gy, 41.5 Gy, 52.6 Gy, 65.5 Gy, and 76.5 Gy were applied in a dose-finding trial. Eight additional wounds were created using the 41.5 Gy dose level. Each wound was photographed and the percentage of the irradiated area ulcerated at given time points was analyzed using ImageJ software. RESULTS: No systemic or lethal sequelae occurred in any animals, and all irradiated skin areas in the multi-dose trial underwent ulceration. Greater than 60% of skin within each irradiated zone underwent ulceration within ten days, with peak ulceration ranging from 62.1% to 79.8%. Peak ulceration showed a weak correlation with radiation dose (r = 0.664). Mean ulceration rate over the study period is more closely correlated to dose (r = 0.753). With the highest dose excluded due to contraction-related distortions, correlation between dose and average ulceration showed a stronger relationship (r = 0.895). Eight additional wounds created using 41.5 Gy all reached peak ulceration above 50%, with all healing significantly but incompletely by the 65-day endpoint. CONCLUSIONS: We developed a functional preclinical model which is currently used to evaluate human tissue-based therapies in the setting of cutaneous radiation injury. Similar models may be widely applicable and useful the development of novel therapies which may improve radiotherapy management over a broad clinical spectrum.


Subject(s)
Disease Models, Animal , Radiation Injuries, Experimental/pathology , Skin Ulcer/etiology , Wound Healing , Animals , Cell- and Tissue-Based Therapy , Female , Humans , Pilot Projects , Rats , Rats, Nude , Skin/radiation effects , Skin Ulcer/pathology
4.
Med Phys ; 38(5): 2335-41, 2011 May.
Article in English | MEDLINE | ID: mdl-21776767

ABSTRACT

PURPOSE: Several linacs with integrated kilovoltage (kV) imaging have been developed for delivery of image guided radiation therapy (IGRT). High geometric accuracy and coincidence of kV imaging systems and megavoltage (MV) beam delivery are essential for successful image guidance. A geometric QA tool has been adapted for routine QA for evaluating and characterizing the geometric accuracy of kV and MV cone-beam imaging systems. The purpose of this work is to demonstrate the application of methodology to routine QA across three IGRT-dedicated linac platforms. METHODS: It has been applied to a Varian Trilogy (Varian Medical Systems, Palo Alto, CA), an Elekta SynergyS (Elekta, Stockholm, Sweden), and a Brainlab Vero (Brainlab AG, Feldkirchen, Germany). Both the Trilogy and SynergyS linacs are equipped with a retractable kV x-ray tube and a flat panel detector. The Vero utilizes a rotating, rigid ring structure integrating a MV x-ray head mounted on orthogonal gimbals, an electronic portal imaging device (EPID), two kV x-ray tubes, and two fixed flat panel detectors. This dual kV imaging system provides orthogonal radiographs, CBCT images, and real-time fluoroscopic monitoring. Two QA phantoms were built to suit different field sizes. Projection images of a QA phantom were acquired using MV and kV imaging systems at a series of gantry angles. Software developed for this study was used to analyze the projection images and calculate nine geometric parameters for each projection. The Trilogy was characterized five times over one year, while the SynergyS was characterized four times and the Vero once. Over 6500 individual projections were acquired and analyzed. Quantitative geometric parameters of both MV and kV imaging systems, as well as the isocenter consistency of the imaging systems, were successfully evaluated. RESULTS: A geometric tool has been successfully implemented for calibration and QA of integrated kV and MV across a variety of radiotherapy platforms. X-ray source angle deviations up to 0.8 degrees, and detector center offsets up to 3 mm, were observed for three linacs, with the exception of the Vero, for which a significant center offset of one kV detector (prior to machine commissioning) was observed. In contrast, the gimbal-based MV source positioning of the Vero demonstrated differences between observed and expected source positions of less than 0.2 mm, both with and without gimbal rotation. CONCLUSIONS: This initial application of this geometric QA tool shows promise as a universal, independent tool for quantitative evaluation of geometric accuracies of both MV and integrated kV imaging systems across a range of platforms. It provides nine geometric parameters of any imaging system at every gantry angle as well as the isocenter coincidence of the MV and kV image systems.


Subject(s)
Algorithms , Imaging, Three-Dimensional/instrumentation , Phantoms, Imaging , Quality Assurance, Health Care/methods , Radiotherapy, Conformal/instrumentation , Therapy, Computer-Assisted/instrumentation , Tomography, X-Ray Computed/instrumentation , Equipment Design , Equipment Failure Analysis , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique/instrumentation , Systems Integration
5.
J Appl Clin Med Phys ; 9(3): 147-156, 2008 Jun 23.
Article in English | MEDLINE | ID: mdl-18716585

ABSTRACT

The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.


Subject(s)
Bone Marrow/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , Liver/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Organ Specificity , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...