Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(14): 5452-5458, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35344655

ABSTRACT

Here we present a comparative study of the magnetic and crystal chemical properties of two Co2+ containing garnets. CaY2Co2Ge3O12 (which has been reported previously) and NaCa2Co2V3O12 both exhibit the onset of antiferromagnetic order around 6 K as well as field-induced transitions around 7 and 10 T, respectively, that manifest as anomalies in the dielectric properties of the material. We perform detailed crystal-chemistry analyses and complementary density functional theory calculations to show that very minor changes in the local environment of the Co ions explain the differences in the two magnetic structures and their respective properties.

2.
Inorg Chem ; 60(12): 8500-8506, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34076406

ABSTRACT

We present a study on the nuclear and magnetic structures of two iron-based garnets with magnetic cations isolated on tetrahedral sites. Ca2YZr2Fe3O12 and Ca2LaZr2Fe3O12 offer an interesting comparison for examining the effect of increasing cation size within the diamagnetic backbone of the garnet crystal structure, and how such changes affect the magnetic order. Despite both systems exhibiting well-pronounced magnetic transitions at low temperatures, we also find evidence for diffuse magnetic scattering due to a competition between the nearest-neighbor, next nearest-neighbor, and so on, within the tetrahedral sites. This competition results in a complex noncollinear magnetic structure on the tetrahedral sublattice creating a mixture of ferro- and antiferromagnetic interactions above the long-range ordering temperature near 20 K and suggests that the cubic site of the garnet plays a significant role in mediating the superexchange interactions between tetrahedral cations.

3.
Inorg Chem ; 60(9): 6249-6254, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33877802

ABSTRACT

Using neutron powder diffraction and magnetic susceptibility measurements, we report on the preparation and characterization of the temperature- and field-dependent properties of CaY2ZrFe4O12, a composition closely related to the high-temperature ferrimagnet Y3Fe5O12. By diluting the concentration of paramagnetic ions on the octahedral sublattice of the garnet structure, we find temperature-dependent canting of the magnetic moments. This reflects the importance of the octahedral sublattice in mediating the magnetic interactions between the tetrahedral sites and offers insight into a large number of competing magnetic interactions in the garnet structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...